Overexpression of the tyrosine decarboxylase gene MdTyDC in apple enhances long-term moderate drought tolerance and WUE

Plant Science ◽  
2021 ◽  
pp. 111064
Author(s):  
Yanpeng Wang ◽  
Qi Chen ◽  
Jiangzhu Zheng ◽  
Zhijun Zhang ◽  
Tengteng Gao ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


Plant Science ◽  
2015 ◽  
Vol 238 ◽  
pp. 26-32 ◽  
Author(s):  
D.A. Ramírez ◽  
J.L. Rolando ◽  
W. Yactayo ◽  
P. Monneveux ◽  
V. Mares ◽  
...  

2018 ◽  
Vol 48 (7) ◽  
pp. 809-820 ◽  
Author(s):  
Neil P. Thompson ◽  
Kathy J. Lewis ◽  
Lisa M. Poirier

Drought tolerance of trees may be affected by competition, but most studies quantifying the relationship do not consider the effect of stem clustering. Trees are often clustered in interior Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco) forests near the grassland interface in central British Columbia due to past harvesting practices or habitat management for mule deer (Odocoileus hemionus hemionus (Rafinesque, 1817)). Climate change projections indicate continued increases in temperature, an outcome that would stress trees growing in dry environments. Trees placed in different states of competition by mechanical harvesting in the 1970s were sampled to provide a 40-year comparison of three levels of competition during 1–2 year droughts. Tree-ring analysis was used to assess the reduction in growth during drought years and resumption of growth in subsequent years. A clear separation of growth rates was evident between open-growing trees, trees on the edge of harvesting trails, and trees within the unharvested interior. Edge trees had intermediate growth rates but no differences were found in the long-term climate–growth relationship compared with open-growing trees. Both Edge and Open classes showed less relative growth reduction during droughts than Interior trees growing between harvest trails. Precipitation throughfall rates and competition for resources are likely driving short-term drought tolerance in combination with other factors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elsayed Mansour ◽  
Hany A. M. Mahgoub ◽  
Samir A. Mahgoub ◽  
El-Sayed E. A. El-Sobky ◽  
Mohamed I. Abdul-Hamid ◽  
...  

AbstractWater deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield‐related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.


Oecologia ◽  
2016 ◽  
Vol 181 (3) ◽  
pp. 721-731 ◽  
Author(s):  
Alexandria L. Pivovaroff ◽  
Louis S. Santiago ◽  
George L. Vourlitis ◽  
David A. Grantz ◽  
Michael F. Allen

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Mihretab G. Ghebrezgabher ◽  
Taibao Yang ◽  
Xuemei Yang

Climate change due to global warming is a world concern, particularly in Africa. In this study, precipitation and temperature variables are taken as a proxy to assess and quantify the long-term climate change and drought in the Horn of Africa (HOA) (1930–2014). We adapted a simple linear regression and interpolation to analyze, respectively, the trend and spatial distribution of the mean annual precipitation and temperature. In addition, standardized precipitation evapotranspiration index (SPEI) was applied to evaluate the drought condition of the HOA. The results revealed that statistically the trend of precipitation decreased insignificantly; the trend of temperature was observed to drop very significantly between 1930 and 1969, but it was dramatically elevated very significantly from 1970 to 2014. The SPEI showed that the HOA experienced from mild to moderate drought throughout the study period with severe to extreme drought in some regions, particularly in 1943, 1984, 1991, and 2009. The drought was a very serious environmental problem in the HOA in the last 85 years. Thus, an immediate action is required to tackle drought and hence poverty and famine in the HOA.


2011 ◽  
Vol 59 (6) ◽  
pp. 575 ◽  
Author(s):  
Ian D. Lunt ◽  
Heidi C. Zimmer ◽  
David C. Cheal

Seedling regeneration after a high intensity wildfire was assessed in a mixed forest dominated by Eucalyptus species and Callitris endlicheri (Parl.) F.M. Bailey. Patterns were compared against the ‘slow seedling’ or ‘tortoise-and-hare’ theory of competitive interactions between gymnosperms and angiosperms. Browsing effects were documented using fenced plots, and seedling density, mortality and height were assessed over 6 years, from 2004–10. Consistent with expectations, Eucalyptus seedlings grew faster than Callitris seedlings in most situations. Callitris seedlings grew faster and produced seed cones sooner in plots with fewer Eucalyptus seedlings compared with plots with dense Eucalyptus seedlings. The local growth rates of Callitris seedlings were not associated with long-term site suitability for Callitris, as many plots with diminutive Callitris seedlings and dense Eucalyptus seedlings were dominated by Callitris trees before the 2003 fire. Contrary to expectations, few Callitris seedlings died during the 6-year period, so competition during the regeneration phase did not regulate co-existence. Strong drought tolerance and the ability to persist in dense, unthinned stands may enable Callitris to persist beneath dense Eucalyptus regeneration. Nevertheless, Callitris seedlings growing with dense Eucalyptus seedlings have a longer primary juvenile period than seedlings in sites with fewer seedling or adult eucalypts, which places these stands at greater risk of mortality in future fires and greater risk of browsing in the meantime.


Drones ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 7 ◽  
Author(s):  
Ricardo Díaz-Delgado ◽  
Gábor Ónodi ◽  
György Kröel-Dulay ◽  
Miklós Kertész

Although many climate research experiments are providing valuable data, long-term measurements are not always affordable. In the last decades, several facilities have secured long-term experiments, but few studies have incorporated spatial and scale effects. Most of them have been implemented in experimental agricultural fields but none for ecological studies. Scale effects can be assessed using remote sensing images from space or airborne platforms. Unmanned aerial vehicles (UAVs) are contributing to an increased spatial resolution, as well as becoming the intermediate scale between ground measurements and satellite/airborne image data. In this paper we assess the applicability of UAV-borne multispectral images to provide complementary experimental data collected at point scale (field sampling) in a long-term rain manipulation experiment located at the Kiskun Long-Term Socio-Ecological Research (LTSER) site named ExDRain to assess the effects on grassland vegetation. Two multispectral sensors were compared at different scales, the Parrot Sequoia camera on board a UAV and the portable Cropscan spectroradiometer. The NDVI values were used to assess the effect of plastic roofs and a proportional reduction effect was found for Sequoia-derived NDVI values. Acceptable and significant positive relationships were found between both sensors at different scales, being stronger at Cropscan measurement scale. Differences found at plot scale might be due to heterogeneous responses to treatments. Spatial variability analysis pointed out a more homogeneous response for plots submitted to severe and moderate drought. More investigation is needed to address the possible effect of species abundance on NDVI at plot scale contributing to a more consistent representation of ground measurements. The feasibility of carrying out systematic UAV flights coincident or close to ground campaigns will certainly reveal the consistency of the observed spatial patterns in the long run.


Sign in / Sign up

Export Citation Format

Share Document