Improving potato drought tolerance through the induction of long-term water stress memory

Plant Science ◽  
2015 ◽  
Vol 238 ◽  
pp. 26-32 ◽  
Author(s):  
D.A. Ramírez ◽  
J.L. Rolando ◽  
W. Yactayo ◽  
P. Monneveux ◽  
V. Mares ◽  
...  
2021 ◽  
Author(s):  
Hongkun Yang ◽  
Wenmei Hu ◽  
Jiarong Zhao ◽  
Xiulan Huang ◽  
Ting Zheng ◽  
...  

Abstract Knowledge of short-term physiological adaption of wheat to soil water deficit is well understood, but little is known about seed ethylene priming effect on long-term drought stress memory of dryland winter wheat. The 42 leading and new cultivars released between 1992 to 2017 were subjected to drought (45% Field water-holding capacity), and well-watered (75% Field water-holding capacity) conditions aim to screen cultivars with contrasting drought resistance and grain yield. Seeds primed with ethylene were subjected to both PEG-8000 and pure water to uncover ethylene-induced stress memory at both physiological and organ levels. Results showed that the soil water deficit (45%FC) that occurred at the tillering stage resulted in 3.2% to 67.4% yield loss for 42 cultivars, which was determined mainly by the decrease in the fertile spike. Seed ethylene priming maintained leaf water by reducing root volume and dry weight, which played a crucial role in drought avoidance. Seed ethylene priming decreased malondialdehyde content by regulating auxin and abscisic acid signaling, reactive oxygen species scavenging capability, and osmotic regulation, which plays a crucial role in drought tolerance. Seed ethylene priming improved drought tolerance of the wheat through metabolic modification of carbon metabolism, glutathione metabolism, and phenylpropanoid biosynthesis . The seed ethylene priming induced long-term stress memory that improved tillering capacity and reduced wheat spikelets abortion, which provided extra 0.3 t ha -1 of grain yield. These results suggested that seed ethylene priming allowed the recall of long-lasting stress defensive memory, increasing grain yield by both drought avoidance and drought tolerance.


2021 ◽  
Vol 486 ◽  
pp. 118964
Author(s):  
Macarena Férriz ◽  
Dario Martin-Benito ◽  
Isabel Cañellas ◽  
Guillermo Gea-Izquierdo

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Mahmoud M. Gaballah ◽  
Azza M. Metwally ◽  
Milan Skalicky ◽  
Mohamed M. Hassan ◽  
Marian Brestic ◽  
...  

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.


1988 ◽  
Vol 18 (4) ◽  
pp. 421-426 ◽  
Author(s):  
T. C. Hennessey ◽  
E. M. Lorenzi ◽  
R. W. McNew

An experiment to quantify the response of unnodulated, fertilized European black alder (Alnusglutinosa (L.) Gaertn.) seedlings to progressive water stress showed contrasting drought tolerance among five clones, using stomatal conductance, leaf area, and height as indices of drought sensitivity. In particular, one rapidly growing clone (AG 8022-14) showed the ability to moderate changes in water stress more efficiently than the more slowly growing clones. After 30 days of moderate levels of water stress, clones that had higher stomatal conductance also had greater leaf area and height growth. Leaf area and height were both sensitive to plant water status, although no threshold of stress associated with a cessation of leaf area or height expansion was found even though stomatal conductance decreased to 0.05 cm s−1 under severe water stress.


2004 ◽  
Vol 31 (12) ◽  
pp. 1149 ◽  
Author(s):  
István Molnár ◽  
László Gáspár ◽  
Éva Sárvári ◽  
Sándor Dulai ◽  
Borbála Hoffmann ◽  
...  

The physiological and morphological responses to water stress induced by polyethylene glycol (PEG) or by withholding water were investigated in Aegilops biuncialis Vis. genotypes differing in the annual rainfall of their habitat (1050, 550 and 225 mm year–1) and in Triticum aestivum L. wheat genotypes differing in drought tolerance. A decrease in the osmotic pressure of the nutrient solution from –0.027 to –1.8 MPa resulted in significant water loss, a low degree of stomatal closure and a decrease in the intercellular CO2 concentration (Ci) in Aegilops genotypes originating from dry habitats, while in wheat genotypes high osmotic stress increased stomatal closure, resulting in a low level of water loss and high Ci. Nevertheless, under saturating light at normal atmospheric CO2 levels, the rate of CO2 assimilation was higher for the Aegilops accessions, under high osmotic stress, than for the wheat genotypes. Moreover, in the wheat genotypes CO2 assimilation exhibited less or no O2 sensitivity. These physiological responses were manifested in changes in the growth rate and biomass production, since Aegilops (Ae550, Ae225) genotypes retained a higher growth rate (especially in the roots), biomass production and yield formation after drought stress than wheat. These results indicate that Aegilops genotypes, originating from a dry habitat have better drought tolerance than wheat, making them good candidates for improving the drought tolerance of wheat through intergeneric crossing.


2018 ◽  
Vol 48 (7) ◽  
pp. 809-820 ◽  
Author(s):  
Neil P. Thompson ◽  
Kathy J. Lewis ◽  
Lisa M. Poirier

Drought tolerance of trees may be affected by competition, but most studies quantifying the relationship do not consider the effect of stem clustering. Trees are often clustered in interior Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco) forests near the grassland interface in central British Columbia due to past harvesting practices or habitat management for mule deer (Odocoileus hemionus hemionus (Rafinesque, 1817)). Climate change projections indicate continued increases in temperature, an outcome that would stress trees growing in dry environments. Trees placed in different states of competition by mechanical harvesting in the 1970s were sampled to provide a 40-year comparison of three levels of competition during 1–2 year droughts. Tree-ring analysis was used to assess the reduction in growth during drought years and resumption of growth in subsequent years. A clear separation of growth rates was evident between open-growing trees, trees on the edge of harvesting trails, and trees within the unharvested interior. Edge trees had intermediate growth rates but no differences were found in the long-term climate–growth relationship compared with open-growing trees. Both Edge and Open classes showed less relative growth reduction during droughts than Interior trees growing between harvest trails. Precipitation throughfall rates and competition for resources are likely driving short-term drought tolerance in combination with other factors.


2019 ◽  
Vol 02 ◽  
pp. 65-70
Author(s):  
Tin Q. Huynh

Drought has been a big problem and damaged seriously to rice cultivation and production in Vietnam and the Mekong Delta region; evaluating drought tolerance of rice is a major objective for the rice improvement programmes in Can Tho University. Fifty-two collected rice varieties including resistant and susceptible control varieties were screened for water stress under the artificial drought condition. Marker RM223 was used to identify the drought tolerance genotypes for some selected varieties with good and moderate tolerant scores. After 30 days of water stress, the results were 6 varieties of good tolerant, 8 varieties of moderate tolerance, 36 varieties of moderately susceptible and 2 varieties of susceptible to drought. Analyses of PCR showed that 10 varieties expressed the similar bands with the resistant control variety. Four varieties (LH8, MTL812, Lua Canh and VB1) with good tolerant to drought were recommended to use for genetic materials of rice breeding program and applying in alternative wetting and drying irrigation technique for rice cultivation.


2020 ◽  
Vol 41 (4) ◽  
pp. 1093
Author(s):  
Suerlani Aparecida Ferreira Moreira ◽  
Pablo Fernando Santos Alves ◽  
Carlos Eduardo Corsato ◽  
Alcinei Mistico Azevedo

Maize hybrids contrasting for drought tolerance differ during the vegetative stage. Drought is the main constraint on maize production in developing nations. Differences during development between genetic materials of maize grown under water restriction suggest that the plant can be improved with a view to its adaptation. In maize, sensitivity to water stress can occur at any stage of its phenological development. However, few studies report its effects on the vegetative phase of the cycle. On this basis, this study was conducted to examine how shoot and root-system indices are expressed in cultivation under water deficit as well as determine which indicators best explain the difference between hybrids in the evaluated water regimes. Commercial seeds of hybrids BR1055 and DKB-390 (drought-tolerant) and BRS1010 (drought-sensitive) were germinated in PVC tubes (1.0 m × 0.1 m) in a randomized complete block design, in a 3 × 2 factorial arrangement. The experiment was developed in a greenhouse where two water regimes were tested: no water stress and with water stress from the VE stage. The soil consisted of quartz sand mixed with a commercial fertilizer. Stem and root traits were evaluated up to the V5 growth stage. Relative chlorophyll content, leaf temperature, stem length, phenology, shoot dry biomass, root length, root dry biomass, root surface area, root volume and D95 were responsive to water deficit. The parameters that allowed the distinction between the hybrids in water the regimes were relative chlorophyll content, leaf temperature, phenology and average root diameter.


Sign in / Sign up

Export Citation Format

Share Document