Iron-induced derangement in hepatic Δ-5 and Δ-6 desaturation capacity and fatty acid profile leading to steatosis: Impact on extrahepatic tissues and prevention by antioxidant-rich extra virgin olive oil

2020 ◽  
Vol 153 ◽  
pp. 102058 ◽  
Author(s):  
Cynthia Barrera ◽  
Rodrigo Valenzuela ◽  
Miguel A. Rincón ◽  
Alejandra Espinosa ◽  
Sandra López-Arana ◽  
...  
2020 ◽  
Vol 15 (1) ◽  
pp. 606-618 ◽  
Author(s):  
Dani Dordevic ◽  
Ivan Kushkevych ◽  
Simona Jancikova ◽  
Sanja Cavar Zeljkovic ◽  
Michal Zdarsky ◽  
...  

AbstractThe aim of this study was to simulate olive oil use and to monitor changes in the profile of fatty acids in home-made preparations using olive oil, which involve repeated heat treatment cycles. The material used in the experiment consisted of extra virgin and refined olive oil samples. Fatty acid profiles of olive oil samples were monitored after each heating cycle (10 min). The outcomes showed that cycles of heat treatment cause significant (p < 0.05) differences in the fatty acid profile of olive oil. A similar trend of differences (p < 0.05) was found between fatty acid profiles in extra virgin and refined olive oils. As expected, the main differences occurred in monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Cross-correlation analysis also showed differences between the fatty acid profiles. The most prolific changes were observed between the control samples and the heated (at 180°C) samples of refined olive oil in PUFAs, though a heating temperature of 220°C resulted in similar decrease in MUFAs and PUFAs, in both extra virgin and refined olive oil samples. The study showed differences in fatty acid profiles that can occur during the culinary heating of olive oil. Furthermore, the study indicated that culinary heating of extra virgin olive oil produced results similar to those of the refined olive oil heating at a lower temperature below 180°C.


Author(s):  
Sonia Tomé‐Rodríguez ◽  
Carlos A Ledesma‐Escobar ◽  
José M Penco‐Valenzuela ◽  
Feliciano Priego‐Capote

Food Research ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 1937-1946
Author(s):  
M.M.D.R. Tugay ◽  
L.E. Mopera ◽  
E.B. Esguerra ◽  
K.A.T. Castillo-Israel

This study aimed to characterize and compare pili (Canarium ovatum Engl.) pulp oil from two different varieties of pili fruits in Bicol, Philippines namely M. Orolfo and Orbase varieties for possible utilization into oil-based products. The effects of varietal differences in pili fruits on physical, chemical and quality characteristics of its pulp oil were determined. These two oils were also compared with control oils, commercially available coconut oil and extra virgin olive oil. Pili pulp oil from M. Orolfo had dark color while Orbase had color close to extra virgin olive oil. The two varieties did not significantly differ from each other in terms of refractive index, moisture and volatile matters, acid value, iodine value, saponification number and percent unsaponifiable matter but significantly differed from coconut oil and extra virgin olive oil. On the other hand, the two varieties significantly differed from each other in terms of peroxide value, Vitamin A and α-tocopherol contents. In terms of fatty acid profile, high amounts of palmitic acid were determined in both pili varieties (19-25%) compared with coconut oil (6.34%). Oleic acid in Orbase was 71.5% while M. Orolfo had 58.1%, which are comparable with extra virgin olive oil (77.9%). Pili pulp oils from M. Orolfo and Orbase can be utilized into oilbased products because its chemical and quality characteristics are within the standard. Both can be stored for a longer period of time and healthier in terms of fatty acid composition and natural antioxidant content.


2018 ◽  
Vol 12 (3) ◽  
Author(s):  
E. Ghanbari Shend ◽  
D. Sivri Ozay ◽  
M . T. Ozkaya ◽  
N. F. Ustunelc

In this study Turkish monocultivar extra virgin olive oil (EVOO) “Sarı Ulak” was extracted by using the Mobile Olive Oil Processing Unit (TEM Oliomio 500-2GV, Italy). Changes in minor and major components and quality characteristics, free fatty acid content, peroxide value and UV absorbance value, were surveyed during a year’s storage period. “Sarı Ulak” olive oil samples were classified as EVOO according to the trade standards of the International Olive Council (IOC) based on free fatty acid, peroxide value, K232 and ΔK values up to the eighth month of the storage period. The results have shown that color values of EVOO changed from green to yellow slowly while UV absorbance values changed during storing. Total polyphenol content of extra virgin olive oil decreased from 205.17 ppm to 144.29 ppm during a year’s storage. Luteolin was the most abundant phenolic compound, and its concentration changed from 184.33 ppm to 115.06 ppm. Apigenin concentration was differed from 2.67 to 1.06 ppm during storing. The initial level of α-tocopherol contents was 184.51 ppm, it decreased to 147 ppm at the end of storage time. After 12 months of storing, about 20 % of α-tocopherol content was destroyed. The amounts of phenolic and tocopherol isomers decreased during storage as expected.


2019 ◽  
Vol 11 (1) ◽  
pp. 52-58
Author(s):  
Esmael Ghanbari Shendi ◽  
Dilek Sivri Özay ◽  
Mücahit Taha Özkaya ◽  
Nim,eti Feyza Üstünel

Turkish olive cultivar known as “Halhalı” that is locally grown in Mardin (Derik) province, situated in the southeast Anatolia, was used for virgin olive oil (VOO) production. Halhalı olive was processed in the “Mobile Olive Oil Processing Unit” (TEM Oliomio 500-2GV, Italy) designed as the first mobile olive mill in Turkey. Some chemical and physical properties (colour, UV absorbance values, free fatty acid content, peroxide value, phenolic and tocopherol profiles) were determined and monitored during one year of storing in the dark at room temperature once in every three months. Results showed that up to the eighth month of storage, free fatty acid content, peroxide and UV-absorption values (K232 and K232 values) did not exceed the limits reported by International Olive Council (IOC) and olive oils were categorized as Extra Virgin Olive Oil (EVOO). Colour changed from green to yellow and UV absorbance values altered during storage. Total phenol and vitamin E (α- tocopherol) contents decreased by 18% and 16.38%, respectively. Luteolin and apigenin were the most abundant phenolics and their contents decreased up to 22% and 28% during storing, respectively.


OCL ◽  
2018 ◽  
Vol 25 (6) ◽  
pp. A602 ◽  
Author(s):  
Esmaeil Ghanbari Shendi ◽  
Dilek Sivri Ozay ◽  
Mucahit Taha Ozkaya ◽  
Nimeti Feyza Ustunel

In present study, “Saurani” Turkish olive monocultivar extra virgin olive oil (EVOO) was extracted by using Mobile Olive Oil Processing Unit (MOOPU)” (TEM Oliomio 500-2GV, Italy). Free fatty acid content, peroxide value, moisture content and UV absorbance value, minor and major components and quality characteristics changes were surveyed during a year storage. “Saurani” olive oil samples weren’t categorized as EVOO according to the trade standards of International Olive Council (IOC) based on peroxide value, UV absorbance values after five and two months of storing, respectively. Free fatty acid content of VOO samples increased during 12 months’ storage, but it was under the IOC limitation for extra virgin olive oil (< 0.8%). According to the results, color values of VOO changed from green to yellow while UV absorbance values altered during storage. Total phenol content decreased from 342.95 to 252.42 ppm in EVOO samples during a year storage time. Luteolin was the most abundant phenolic compound and its decrement was 10%. Tyrosol content of VOO samples increased from 2.80 to 8.81 ppm. Except tyrosol, other phenolic compounds’ concentration decreased after a year storage time. α-tocopherol contents of VOO sample were 324.60 ppm. After 12 months of storage, about 20.48% of α-tocopherol content was destroyed. Amounts of phenolic and tocopherol isomers decreased during storage as expected. Results of this study showed that chemical composition and oxidative stability of VOO samples changed significantly.


Sign in / Sign up

Export Citation Format

Share Document