Prediction of the effects of boron release kinetics on the vapor species of cesium and iodine fission products

2016 ◽  
Vol 92 ◽  
pp. 254-259 ◽  
Author(s):  
Shuhei Miwa ◽  
Shinichiro Yamashita ◽  
Masahiko Osaka
1987 ◽  
Vol 112 ◽  
Author(s):  
L. H. Johnson ◽  
D. W. Shoesmith ◽  
S. Stroes-Gascoyne

AbstractThe concept of disposal of unreprocessed spent fuel has now been under study internationally for over ten years. Considerable progress has been made in understanding the factors that will control radionuclide release from spent fuel in an underground disposal vault. This progress is reviewed and the research areas of significance in providing further data for source term models are discussed. Key areas for future research are identified; these include improved characterization of spent fuel to determine the inventories of fission products at grain boundaries, together with their release kinetics; and a better understanding of the effects of solution chemistry on spent fuel dissolution, in particular the effects of salinity, redox chemistry, and radiolysis of groundwater. Approaches to modelling the dissolution of spent fuel are discussed, and a possible approach for developing an oxidative dissolution model is outlined.


1992 ◽  
Vol 99 (3) ◽  
pp. 330-342 ◽  
Author(s):  
Brent J. Lewis ◽  
Fernando C. Iglesias ◽  
C. E. Laurence Hunt ◽  
David S. Cox

1976 ◽  
Vol 32 ◽  
pp. 169-182
Author(s):  
B. Kuchowicz

SummaryIsotopic shifts in the lines of the heavy elements in Ap stars, and the characteristic abundance pattern of these elements point to the fact that we are observing mainly the products of rapid neutron capture. The peculiar A stars may be treated as the show windows for the products of a recent r-process in their neighbourhood. This process can be located either in Supernovae exploding in a binary system in which the present Ap stars were secondaries, or in Supernovae exploding in young clusters. Secondary processes, e.g. spontaneous fission or nuclear reactions with highly abundant fission products, may occur further with the r-processed material in the surface of the Ap stars. The role of these stars to the theory of nucleosynthesis and to nuclear physics is emphasized.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
T. E. Mitchell ◽  
R. B. Schwarz

Traditional oxide glasses occur naturally as obsidian and can be made easily by suitable cooling histories. In the past 30 years, a variety of techniques have been discovered which amorphize normally crystalline materials such as metals. These include [1-3]:Rapid quenching from the vapor phase.Rapid quenching from the liquid phase.Electrodeposition of certain alloys, e.g. Fe-P.Oxidation of crystals to produce amorphous surface oxide layers.Interdiffusion of two pure crystalline metals.Hydrogen-induced vitrification of an intermetal1ic.Mechanical alloying and ball-milling of intermetal lie compounds.Irradiation processes of all kinds using ions, electrons, neutrons, and fission products.We offer here some general comments on the use of TEM to study these materials and give some particular examples of such studies.Thin specimens can be prepared from bulk homogeneous materials in the usual way. Most often, however, amorphous materials are in the form of surface films or interfacial films with different chemistry from the substrates.


2020 ◽  
pp. 15-27

In order to study the effect of phosphogypsum and humic acids in the kinetic release of salt from salt-affected soil, a laboratory experiment was conducted in which columns made from solid polyethylene were 60.0 cm high and 7.1 cm in diameter. The columns were filled with soil so that the depth of the soil was 30 cm inside the column, the experiment included two factors, the first factor was phosphogypsum and was added at levels 0, 5, 10 and 15 tons ha-1 and the second-factor humic acids were added at levels 0, 50, 100 and 150 kg ha-1 by mixing them with the first 5 cm of column soil and one repeater per treatment. The continuous leaching method was used by using an electrolytic well water 2.72 dS m-1. Collect the leachate daily and continue the leaching process until the arrival of the electrical conductivity of the filtration of leaching up to 3-5 dS m-1. The electrical conductivity and the concentration of positive dissolved ions (Ca, Mg, Na) were estimated in leachate and the sodium adsorption ratio (SAR) was calculated. The results showed that the best equation for describing release kinetics of the salts and sodium adsorption ratio in soil over time is the diffusion equation. Increasing the level of addition of phosphogypsum and humic acids increased the constant release velocity (K) of salts and the sodium adsorption ratio. The interaction between phosphogypsum and humic acids was also affected by the constant release velocity of salts and the sodium adsorption ratio. The constant release velocity (K) of the salts and the sodium adsorption ratio at any level of addition of phosphogypsum increased with the addition of humic acids. The highest salts release rate was 216.57 in PG3HA3, while the lowest rate was 149.48 in PG0HA0. The highest release rate of sodium adsorption ratio was 206.09 in PG3HA3, while the lowest rate was 117.23 in PG0HA0.


2003 ◽  
Vol 40 (2) ◽  
pp. 104-113 ◽  
Author(s):  
Isamu SATO ◽  
Toshio NAKAGIRI ◽  
Takashi HIROSAWA ◽  
Sinya MIYAHARA ◽  
Takashi NAMEKAWA

2016 ◽  
Author(s):  
Eva-Maria Mozgan ◽  
Michael Edelmayer ◽  
Klara Janjić ◽  
Manuela Pensch ◽  
Michael Fischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document