A 1D palladium coordination polymer and its catalytic activity in microwave-assisted Sonogashira reactions

Polyhedron ◽  
2021 ◽  
pp. 115229
Author(s):  
Gang Min Lee ◽  
Soon W. Lee
Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1101
Author(s):  
Anirban Karmakar ◽  
Anup Paul ◽  
Elia Pantanetti Sabatini ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.


2018 ◽  
Vol 44 (6) ◽  
pp. 6157-6161 ◽  
Author(s):  
M. Poienar ◽  
R. Banica ◽  
P. Sfirloaga ◽  
C. Ianasi ◽  
C.V. Mihali ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Worawat Wattanathana ◽  
Suttipong Wannapaiboon ◽  
Chatchai Veranitisagul ◽  
Navadol Laosiripojana ◽  
Nattamon Koonsaeng ◽  
...  

Palladium-impregnated ceria materials were successfully prepared via an integrated procedure between a metal complex decomposition method and a microwave-assisted wetness impregnation. Firstly, ceria (CeO2) powders were synthesized by thermal decomposition of cerium(III) complexes prepared by using cerium(III) nitrate or cerium(III) chloride as a metal source to form a metal complex precursor with triethanolamine or benzoxazine dimer as an organic ligand. Palladium(II) nitrate was consequently introduced to the preformed ceria materials using wetness impregnation while applying microwave irradiation to assist dispersion of the dopant. The palladium-impregnated ceria materials were obtained by calcination under reduced atmosphere of 10% H2 in He stream at 700°C for 2 h. Characterization of the palladium-impregnated ceria materials reveals the influences of the metal complex precursors on the properties of the obtained materials. Interestingly, the palladium-impregnated ceria prepared from the cerium(III)-benzoxazine dimer complex revealed significantly higher BET specific surface area and higher content of the more active Pdδ+ (δ > 2) species than the materials prepared from cerium(III)-triethanolamine complexes. Consequently, it exhibited the most efficient catalytic activity in the methane steam reforming reaction. By optimization of the metal complex precursors, characteristics of the obtained palladium-impregnated ceria catalysts can be modified and hence influence the catalytic activity.


Polyhedron ◽  
2011 ◽  
Vol 30 (11) ◽  
pp. 1842-1848 ◽  
Author(s):  
Hassan Hosseini Monfared ◽  
Sohaila Alavi ◽  
Afsaneh Farrokhi ◽  
Morteza Vahedpour ◽  
Peter Mayer

2014 ◽  
Vol 38 (9) ◽  
pp. 4267-4274 ◽  
Author(s):  
Manoj Trivedi ◽  
Sanjeev kumar Ujjain ◽  
Raj Kishore Sharma ◽  
Gurmeet Singh ◽  
Abhinav Kumar ◽  
...  

A cyano-bridged Cu(ii)–Cu(i) complex was synthesized and transformed into CuO nanoparticles. Their catalytic activity in C–N, C–O, and C–S cross-coupling reactions was explored.


2018 ◽  
Vol 2 (7) ◽  
pp. 1561-1573 ◽  
Author(s):  
Manjunath Chatti ◽  
Alexey M. Glushenkov ◽  
Thomas Gengenbach ◽  
Gregory P. Knowles ◽  
Tiago C. Mendes ◽  
...  

A rapid low-temperature microwave-assisted synthesis of nickel(iron) layered hydroxides and sulphides that exhibit robust catalytic activity for electrooxidation of alkaline water is introduced.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1053 ◽  
Author(s):  
Manas Sutradhar ◽  
Tannistha Roy Barman ◽  
Armando J. L. Pombeiro ◽  
Luísa M. D. R. S. Martins

The mononuclear Cu(II) complex [Cu((kNN′O-HL)(H2O)2] (1) was synthesized using N-acetylpyrazine-2-carbohydrazide (H2L) and characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray crystallography. Two Fe(III) complexes derived from the same ligand viz, mononuclear [Fe((kNN′O-HL)Cl2] (2) and the binuclear [Fe(kNN′O-HL)Cl(μ-OMe)]2 (3) (synthesized as reported earlier), were also used in this study. The catalytic activity of these three complexes (1–3) was examined towards the oxidation of alcohols using tert-butyl hydroperoxide (TBHP) as oxidising agent under solvent-free microwave irradiation conditions. Primary and secondary benzyl alcohols (benzyl alcohol and 1-phenylethanol), and secondary aliphatic alcohols (cyclohexanol) were used as model substrates for this study. A comparison of their catalytic efficiency was performed. Complex 1 exhibited the highest activity in the presence of TEMPO as promoter for the oxidation of 1-phenylethanol with a maximum yield of 91.3% of acetophenone.


Sign in / Sign up

Export Citation Format

Share Document