Anhydride-cured epoxy resin reinforcing with citric acid-modified cellulose

2020 ◽  
Vol 178 ◽  
pp. 109213 ◽  
Author(s):  
Yu-I Hsu ◽  
Lulu Huang ◽  
Taka-Aki Asoh ◽  
Hiroshi Uyama
2019 ◽  
Vol 797 ◽  
pp. 118-126
Author(s):  
Nornizar Anuar ◽  
Wan Nor Asyikin Wan Mohamed Daid ◽  
Sopiah Ambong Khalid ◽  
Sarifah Fauziah Syed Draman ◽  
Siti Rozaimah Sheikh Abdullah

In this paper, chemically modified cellulose was used instead of cellulose as it offers higher adsorption capacities, great chemical strength and good resistance to heat. As part of Phyto-Adsorption Remediation Method, citric acid modified cellulose (CAMC) was used to treat ferric ion. However, there is a large possibility that CAMC molecule might interact with water molecule that contain hydrogen bond and hence pose as a competitor to ferric acid and reduces the efficiency of CAMC in ferric ion removal. Thus, the aim of this work is to identify the most stable hydrogen bond between CAMC and water, by using a computational technique. The interaction between the water molecules and CAMC was observed by varying the volume of water molecule with modified cellulose by an expansion in amorphous region. The simulation result shows that for water loading less than 20 molecules, the interaction between water molecules and CAMC is higher at temperature 311K, whilst for water loading higher than 20 molecules, the interaction weakens at higher temperature. This work proves that water molecules have the tendency to bind to carboxyl group of glucose, to oxygen of ester and to oxygen of anhydride acid of the CAMC molecule, which might pose a competition for ferric acid removal. The calculation of coordination number has shown that the number of atoms present in the first hydration shell (of radius < 2.5Å) is more as the temperature increases from 298K to 311K, which indicates that the adsorption is better at higher temperature. For hydration shell at radius >2.5Å, cell temperature is not significant to the number of atoms present.


2020 ◽  
Vol 31 (6) ◽  
pp. 1340-1348
Author(s):  
Minghang Wang ◽  
Ting Yu ◽  
Zhengyu Feng ◽  
Jun Sun ◽  
Xiaoyu Gu ◽  
...  

2020 ◽  
Vol 2 (6) ◽  
pp. 2274-2283 ◽  
Author(s):  
Garry Sinawang ◽  
Taka-aki Asoh ◽  
Motofumi Osaki ◽  
Hiroyasu Yamaguchi ◽  
Akira Harada ◽  
...  

2018 ◽  
Vol 6 (8) ◽  
pp. 9966-9978 ◽  
Author(s):  
Xiaoyan He ◽  
Francesca Luzi ◽  
Weijun Yang ◽  
Zefang Xiao ◽  
Luigi Torre ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 218-233
Author(s):  
Gina Alejandra Gil Giraldo ◽  
Janaina Mantovan ◽  
Beatriz M. Marim ◽  
João Otávio F. Kishima ◽  
Suzana Mali

This study aimed to produce modified cellulose extracted from oat hulls by an esterification reaction with citric acid (CA) employing ultrasonication and reactive extrusion assisted processes. Modified samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (DRX), scanning electron microscopy (SEM), wettability, oil and water absorption capacities, water adsorption capacity, and thermal stability. From FTIR results it can be observed a new band for all modified samples at 1735 cm−1, confirming the esterification. The morphology and crystallinity pattern of fibers were not affected by esterification, and crystallinity indexes ranged from 43% (unmodified cellulose) to 44–49% in modified samples. Both groups of samples, obtained by ultrasonication and reactive extrusion, showed decreases in water absorption capacities (1.63–1.71 g/g) compared to unmodified cellulose (9.38 g/g). It was observed an increase in oil retention capacity from 1.80 g/g (unmodified cellulose) to 4.57–7.31 g/g after esterification, and also the modified samples presented higher affinity by a non-polar solvent in the wettability test. The new properties of modified cellulose expand its use in the industry and prove that ultrasonication and reactive extrusion can be used to obtain esterified cellulose, being eco-friendly, simple, and convenient processes with short reaction times.


Background: The technological developments for nanocellulose production from cheaper plant materials compared to wood, in particular, agricultural waste is an urgent task of nanobiophysics. The discovery of possibility of expanding the functional characteristics of materials in compositions with modified cellulose particles essentially stimulated the interest of researchers in cellulose composites. Surface modification of cellulose particles by functional materials, such as dyes, metal oxides, silicon, allows applying composites with modified cellulose in various areas of modern industry. A significant improvement in the operational performances of functionalized cellulose particles can be achieved by using them as filler in polymers. Epoxy resin compositions with modified and unmodified cellulose particles, studied in present work, are an example of hybrid biosystem. The interfacial interaction of filler particles with the epoxy matrix, their concentration and dispersion can change the physical and chemical properties of the biopolymer and the functional parameters of biocomposites. Studying the influence of external fields on the physical and chemical properties of epoxy resin-based biosystems and their influence on operational parameters seems to be an urgent problem of advanced and sustained materials science. Objectives: The purpose of this work was to develop an effective nanocellulose synthesis from plant materials and surface functionalization of micro- and nanocellulose particles with clathrochelate iron (ΙΙ) dye as well obtaining biocompositions of epoxy resin with functionalized and non-functionalized micro- and nanocellulose, and to explore of the morphology, chemical resistance, mechanical and thermal properties of epoxy composites with cellulose micro and nanoparticles. Materials and methods: The studying objects were the composites of epoxy resin Eposir-7120 with a polyethylene polyamine “PEPA” hardener in a ratio of 6.2:1 and 10% cellulose micro and nanoparticles. The microcellulose obtained from wood has been a commercial product. Nanocellulose has been synthesized from organosolv cellulose obtained from Miscanthus x giganteus stalks. Surface modification of micro- and nanocellulose was performed using the clathrochelate iron (ΙΙ) dye. The specific surface area of cellulose particles was determined using low-temperature nitrogen adsorption-desorption according to the Brunauer-Emmett-Teller method. Mechanical parameters were determined using universal Shopper and UMM-10 machines. Thermal analysis was performed using Q1500 analyzer. Swelling was determined by the gravimetric method. Results: Elastic modulus E, compressive strength σ and thermogravimetric parameters were determined. It was shown that in composites with micro and nanocellulose the E rises in 7.0–12.2% while the σ increases in 9.1% for composites with cellulose micro particles. The loading resin with nanocellulose and modified cellulose microparticles no affects the σ value of composites. The thermal stability of epoxy polymer (310°C) reduces after loading with micro and nanocellulose to 290 and 300°C, respectively. Chemical resistance of composites with both celluloses to 20% nitric acid reduces. In neutral medium swelling characterizes by rapid sorption to saturation of 15–20% acetone in 36 hours. Conclusions: Thus, the synthesis method of nanocellulose from plant materials and functionalization of its surface with clathrochelate iron (ΙΙ) were developed. Light response of dye was detected in visible spectral range. Epoxy resin composites with 10% micro and nanocellulose were obtained. The filling effect with micro- and nanocellulose at elastic modulus, compressive strength, and thermal stability of epoxycomposites was studied. The swelling processes run similarly in composites with cellulose micro and nanoparticles.


2018 ◽  
Vol 934 ◽  
pp. 181-186 ◽  
Author(s):  
Clare L. Garing ◽  
Jimyl M. Arabit ◽  
Lady Catherine C. Elec ◽  
Ramon Christian P. Eusebio ◽  
Ruby Lynn G. Ventura ◽  
...  

Magnetic citric acid-modified cellulose was successfully produced and tested for the removal of copper in aqueous solution. Initially, the cellulose material was reacted with citric acid solution. The modified cellulose was then attached to the Fe2O3nanoparticle producing an adsorptive magnetic material. Characterization using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy indicated successful binding and chemical modification of the cellulose. Its adsorption was also studied to evaluate its potential in removing heavy metals such as copper. Removal of copper was as high as 84.74% in solution containing 25 mg/L copper. The sorption of copper in the magnetic sorbent follows second-order kinetics and best fits Freundlich isotherm model. The developed material has a strong magnetic response, thus its recovery in the aqueous solution could be easily facilitated using a magnetic field. Regeneration study indicated high recovery efficiency maintaining above 95.7% copper removal efficiency after three cycles of use. Thus, a highly efficient magnetic adsorptive material was produced using simple chemical modification aside from its easy recovery in the water.


Sign in / Sign up

Export Citation Format

Share Document