Citric Acid-Modified Cellulose-Based Tough and Self-Healable Composite Formed by Two Kinds of Noncovalent Bonding

2020 ◽  
Vol 2 (6) ◽  
pp. 2274-2283 ◽  
Author(s):  
Garry Sinawang ◽  
Taka-aki Asoh ◽  
Motofumi Osaki ◽  
Hiroyasu Yamaguchi ◽  
Akira Harada ◽  
...  
2019 ◽  
Vol 797 ◽  
pp. 118-126
Author(s):  
Nornizar Anuar ◽  
Wan Nor Asyikin Wan Mohamed Daid ◽  
Sopiah Ambong Khalid ◽  
Sarifah Fauziah Syed Draman ◽  
Siti Rozaimah Sheikh Abdullah

In this paper, chemically modified cellulose was used instead of cellulose as it offers higher adsorption capacities, great chemical strength and good resistance to heat. As part of Phyto-Adsorption Remediation Method, citric acid modified cellulose (CAMC) was used to treat ferric ion. However, there is a large possibility that CAMC molecule might interact with water molecule that contain hydrogen bond and hence pose as a competitor to ferric acid and reduces the efficiency of CAMC in ferric ion removal. Thus, the aim of this work is to identify the most stable hydrogen bond between CAMC and water, by using a computational technique. The interaction between the water molecules and CAMC was observed by varying the volume of water molecule with modified cellulose by an expansion in amorphous region. The simulation result shows that for water loading less than 20 molecules, the interaction between water molecules and CAMC is higher at temperature 311K, whilst for water loading higher than 20 molecules, the interaction weakens at higher temperature. This work proves that water molecules have the tendency to bind to carboxyl group of glucose, to oxygen of ester and to oxygen of anhydride acid of the CAMC molecule, which might pose a competition for ferric acid removal. The calculation of coordination number has shown that the number of atoms present in the first hydration shell (of radius < 2.5Å) is more as the temperature increases from 298K to 311K, which indicates that the adsorption is better at higher temperature. For hydration shell at radius >2.5Å, cell temperature is not significant to the number of atoms present.


2018 ◽  
Vol 6 (8) ◽  
pp. 9966-9978 ◽  
Author(s):  
Xiaoyan He ◽  
Francesca Luzi ◽  
Weijun Yang ◽  
Zefang Xiao ◽  
Luigi Torre ◽  
...  

2020 ◽  
Vol 178 ◽  
pp. 109213 ◽  
Author(s):  
Yu-I Hsu ◽  
Lulu Huang ◽  
Taka-Aki Asoh ◽  
Hiroshi Uyama

2021 ◽  
Vol 2 (2) ◽  
pp. 218-233
Author(s):  
Gina Alejandra Gil Giraldo ◽  
Janaina Mantovan ◽  
Beatriz M. Marim ◽  
João Otávio F. Kishima ◽  
Suzana Mali

This study aimed to produce modified cellulose extracted from oat hulls by an esterification reaction with citric acid (CA) employing ultrasonication and reactive extrusion assisted processes. Modified samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (DRX), scanning electron microscopy (SEM), wettability, oil and water absorption capacities, water adsorption capacity, and thermal stability. From FTIR results it can be observed a new band for all modified samples at 1735 cm−1, confirming the esterification. The morphology and crystallinity pattern of fibers were not affected by esterification, and crystallinity indexes ranged from 43% (unmodified cellulose) to 44–49% in modified samples. Both groups of samples, obtained by ultrasonication and reactive extrusion, showed decreases in water absorption capacities (1.63–1.71 g/g) compared to unmodified cellulose (9.38 g/g). It was observed an increase in oil retention capacity from 1.80 g/g (unmodified cellulose) to 4.57–7.31 g/g after esterification, and also the modified samples presented higher affinity by a non-polar solvent in the wettability test. The new properties of modified cellulose expand its use in the industry and prove that ultrasonication and reactive extrusion can be used to obtain esterified cellulose, being eco-friendly, simple, and convenient processes with short reaction times.


2018 ◽  
Vol 934 ◽  
pp. 181-186 ◽  
Author(s):  
Clare L. Garing ◽  
Jimyl M. Arabit ◽  
Lady Catherine C. Elec ◽  
Ramon Christian P. Eusebio ◽  
Ruby Lynn G. Ventura ◽  
...  

Magnetic citric acid-modified cellulose was successfully produced and tested for the removal of copper in aqueous solution. Initially, the cellulose material was reacted with citric acid solution. The modified cellulose was then attached to the Fe2O3nanoparticle producing an adsorptive magnetic material. Characterization using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy indicated successful binding and chemical modification of the cellulose. Its adsorption was also studied to evaluate its potential in removing heavy metals such as copper. Removal of copper was as high as 84.74% in solution containing 25 mg/L copper. The sorption of copper in the magnetic sorbent follows second-order kinetics and best fits Freundlich isotherm model. The developed material has a strong magnetic response, thus its recovery in the aqueous solution could be easily facilitated using a magnetic field. Regeneration study indicated high recovery efficiency maintaining above 95.7% copper removal efficiency after three cycles of use. Thus, a highly efficient magnetic adsorptive material was produced using simple chemical modification aside from its easy recovery in the water.


2020 ◽  
Vol 140 ◽  
pp. 25-29
Author(s):  
K Akiyama ◽  
N Hirazawa ◽  
A Hatanaka

Oxytetracycline (OTC) has been commonly used as an effective antibiotic against various fish bacterial diseases, including vibriosis. In this study, the absorption-enhancing effect of citric acid on oral OTC pharmacokinetics and treatment of artificial Vibrio anguillarum infection was evaluated in juvenile yellowtail Seriola quinqueradiata followed by serum OTC concentration analysis. When 25 mg kg-1 body weight (BW) OTC was administered in combination with 1250 mg kg-1 BW citric acid, the serum OTC concentration reached almost the same concentration as that of the group treated with 50 mg kg-1 BW OTC. This coadministration successfully suppressed mortality due to vibriosis similar to the group treated with 50 mg kg-1 BW OTC. Conversely, poor efficacy was observed when only 25 mg kg-1 BW OTC was administered. These results suggest that coadministration of citric acid can be beneficial in reducing the dose of OTC needed for effective treatment, and thus contributes to the goal of reduced use of this antibiotic in aquaculture.


Sign in / Sign up

Export Citation Format

Share Document