Prediction of elastic properties of nanofibrillated cellulose from micromechanical modeling and nano-structure characterization by transmission electron microscopy

Cellulose ◽  
2013 ◽  
Vol 20 (2) ◽  
pp. 761-770 ◽  
Author(s):  
Gabriella Josefsson ◽  
Bjørn S. Tanem ◽  
Yanjun Li ◽  
Per E. Vullum ◽  
E. Kristofer Gamstedt
2006 ◽  
Vol 514-516 ◽  
pp. 353-358 ◽  
Author(s):  
Shinzo Kohjiya

. Generally rubber products are a typical soft material, and a composite of a nano-filler (typically, carbon black or particulate silica) and a rubber (natural rubber and various synthetics are used). The properties of these soft nano-composites have been well known to depend on the dispersion of the nano-filler in the rubbery matrix. The most powerful tool for the elucidation of it has been transmission electron microscopy (TEM). The microscopic techniques are based on the projection of 3-dimensional (3D) body on a plane (x, y plane), thus the structural information along the thickness (z axis) direction of the sample is difficult to obtain. This paper describes our recent results on the dispersion of carbon black (CB) and particulate silica in natural rubber (NR) matrix observed by TEM combined with electron tomography (3D-TEM) technique, which enabled us to obtain images of 3D nano-structure of the sample. Thus, 3D images of CB and silica in NR matrix are visualized and analyzed in this communication. These results are precious ones for the design of soft nano-composites, and the technique will become an indispensable one in nanotechnology.


2018 ◽  
Vol 5 (11) ◽  
pp. 2836-2855 ◽  
Author(s):  
W. Wan ◽  
J. Su ◽  
X. D. Zou ◽  
T. Willhammar

This review presents various TEM techniques including electron diffraction, high-resolution TEM and scanning TEM imaging, and electron tomography and their applications for structure characterization of zeolite materials.


1996 ◽  
Vol 423 ◽  
Author(s):  
S. Ruvimov ◽  
Z. Liliental-Weber ◽  
J. Washburn ◽  
K. J. Duxstad ◽  
E. E. Hailer ◽  
...  

AbstractTransmission electron microscopy has been applied to characterize the structure of Ti/Al and Ti/Al/Ni/Au ohmic contacts on n-type GaN (˜1017 cm−3 ) epitaxial layers. A thin polycrystalline cubic TiN layer epitaxially matched to the (0001) GaN surface was detected at the interface with the GaN substrate. This layer was studied in detail by electron diffraction and high resolution electron microscopy. The orientation relationship between the cubic TiN and the GaN was found to be: {111}TiN//{00.1}GaN, [110]TiN//[11.0]GaN, [112 ]TiN//[ 10.0]GaN. The formation of this cubic TiN layer results in an excess of N vacancies in the GaN close to the interface which is considered to be the reason for the low resistance of the contact.


Sign in / Sign up

Export Citation Format

Share Document