Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate

Polymer ◽  
2010 ◽  
Vol 51 (12) ◽  
pp. 2708-2720 ◽  
Author(s):  
Gaurav R. Kasaliwal ◽  
Sven Pegel ◽  
Andreas Göldel ◽  
Petra Pötschke ◽  
Gert Heinrich
2016 ◽  
Vol 51 (2) ◽  
pp. 199-208 ◽  
Author(s):  
B Ribeiro ◽  
RB Pipes ◽  
ML Costa ◽  
EC Botelho

Polyphenylene sulfide-based nanocomposites filled with unmodified multiwalled carbon nanotubes from 0.5 wt% to 8.0 wt% have been prepared by melt mixing technique with a single-screw extruder and hot press. Transmission electronic microscopy and scanning electron microscopy analysis were carried out in order to assess the multiwalled carbon nanotubes dispersion throughout the polyphenylene sulfide matrix. Electrical conductivity of the polymer was dramatically enhanced by about 11 decades between 2.0 wt% and 3.0 wt% of nanotubes, suggesting the formation of three-dimensional conductive network within the polymeric matrix. The storage modulus (G′) of neat polyphenylene sulfide presented an increase by two orders of magnitude when 2.0 wt% of pristine multiwalled carbon nanotubes was considered, with the formation of an interconnected nanotube structure, indicative of “pseudo-solid-like” behavior. In addition, percolation networks were formed when the loading levels achieve up to 1.5 wt% for multiwalled carbon nanotubes/polyphenylene sulfide composites.


2011 ◽  
Vol 122 (6) ◽  
pp. 3744-3750 ◽  
Author(s):  
Adolfo Benedito ◽  
Ignacio Buezas ◽  
Enrique Giménez ◽  
Begoña Galindo ◽  
Amaya Ortega

2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

2018 ◽  
Vol 69 (5) ◽  
pp. 1233-1239
Author(s):  
Raluca Madalina Senin ◽  
Ion Ion ◽  
Ovidiu Oprea ◽  
Rusandica Stoica ◽  
Rodica Ganea ◽  
...  

In this study, non-irradiated and weathered multiwalled carbon nanotubes (MWCNTs) obtained through irradiation, were studied as adsorbents for BPA, both nanomaterials being characterized before and after the adsorption process. The objectives of our investigation were to compare the characteristics of non-irradiated and irradiated MWCNTs, to evaluate the adsorption capacity of BPA by pristine and irradiated MWCNTs and to determine the variation of the kinetic, sorption and thermodynamic parameters during sorption process using both sorbents.


Sign in / Sign up

Export Citation Format

Share Document