Measurement and quantitative analysis of fiber orientation distribution in long fiber reinforced part by injection molding

2015 ◽  
Vol 42 ◽  
pp. 168-174 ◽  
Author(s):  
Xianjun Sun ◽  
John Lasecki ◽  
Danielle Zeng ◽  
Yuan Gan ◽  
Xuming Su ◽  
...  
2005 ◽  
Vol 297-300 ◽  
pp. 2897-2902 ◽  
Author(s):  
Jin Woo Kim ◽  
Jung Ju Lee ◽  
Dong Gi Lee

The study for strength calculation of one way fiber-reinforced composites and the study measuring precisely fiber orientation distribution were presented. However, because the DB that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed, we need the systematic study for that. Therefore, in this study, we investigated what effect the fiber content ratio and fiber orientation distribution have on the strength of composite sheet after making fiber reinforced polymeric composite sheet by changing fiber orientation distribution with the fiber content ratio. The result of this study will become a guide to design data of the most suitable parts design or fiber reinforced polymeric composite sheet that uses the fiber reinforced polymeric composite sheet in industry spot, because it was conducted in terms of developing products. We studied the effect the fiber orientation distribution has on tensile strength of fiber reinforced polymeric composite material and achieved this results below. We can say that the increasing range of the value of fiber reinforced polymeric composite’s tensile strength in the direction of fiber orientation is getting wider as the fiber content ratio increases. It shows that the value of fiber reinforced polymeric composite’s tensile strength in the direction of fiber orientation 90° is similar with the value of polypropylene’s intensity when fiber orientation function is J= 0.7, regardless of the fiber content ratio. Tensile strength of fiber reinforced polymeric composite is affected by the fiber orientation distribution more than by the fiber content ratio.


2018 ◽  
Vol 32 (11) ◽  
pp. 1525-1546 ◽  
Author(s):  
Yue Mu ◽  
Anbiao Chen ◽  
Guoqun Zhao ◽  
Yujia Cui ◽  
Jiejie Feng ◽  
...  

The fiber-reinforced polymer composites are important alternative for conventional structural materials because of their excellent comprehensive performance and weight reduction. The mechanical properties of such composite materials are mainly determined by the fiber orientation induced through practical manufacturing process. In the study, a through process modeling (TPM) method coupling the microstructure evolution and the mechanical properties of fiber-reinforced composites in practical processing is presented. The numerical methodology based on the finite volume method is performed to investigate three-dimensional forming process in the injection molding of fiber-reinforced composites. The evolution of fiber orientation distribution is successfully predicted by using a reduced strain closure model. The corresponding finite volume model for TPM is detailedly derived and the pressure implicit with splitting of operators (PISO) algorithm is employed to improve computational stability. The flow-induced multilayer structure is successfully predicted according to essential flow characteristics and the fiber orientation distribution. The mechanical properties of such anisotropy composites is further calculated based on the stiffness analysis and the Tandon–Weng model. The improvement of mechanical properties in each direction of the injection molded product are evaluated by using the established mathematical model and numerical algorithm. The influences of the geometric structure of injection mold cavity, the fiber volume fractions, and the fiber aspect ratios on the mechanical properties of composite products are further discussed. The mathematical model and numerical method proposed in the study can be successfully adopted to investigate the structural response of composites in practical manufacturing process that will be helpful for optimum processing design.


2017 ◽  
Vol 52 (13) ◽  
pp. 1781-1797 ◽  
Author(s):  
Bhisham N Sharma ◽  
Diwakar Naragani ◽  
Ba Nghiep Nguyen ◽  
Charles L Tucker ◽  
Michael D Sangid

We present a detailed methodology for experimental measurement of fiber orientation distribution in injection-molded discontinuous fiber composites using the method of ellipses on two-dimensional cross sections. Best practices to avoid biases occurring during surface preparation and optical imaging of carbon-fiber-reinforced thermoplastics are discussed. A marker-based watershed transform routine for efficient image segmentation and the separation of touching fiber ellipses is developed. The sensitivity of the averaged orientation tensor to the image sample size is studied for the case of long-fiber thermoplastics. A Mori–Tanaka implementation of the Eshelby model is then employed to quantify the sensitivity of elastic stiffness predictions to biases in the fiber orientation distribution measurements.


2017 ◽  
Vol 742 ◽  
pp. 231-237 ◽  
Author(s):  
Metin Tülümen ◽  
Thomas Hanemann ◽  
Michael J. Hoffmann ◽  
Rainer Oberacker ◽  
Volker Piotter

In this study, it was tried to develop a process chain for ceramic injection molding of Al2O3-chopped-fiber reinforced oxide-ceramic-matrix-composite. The feedstocks are compounded at 50 Vol. % filling degree of solid (Al2O3 μ-powder (Taimei Chemicals Co. Ltd.) and 3,2 mm chopped fibers (3M)), in which fiber content varies from 0 Vol. % to 100 Vol. %. As binder system, PE + Paraffin Wax + Stearic Acid are used. The ingredients are compounded in a kneader (Brabender) at 125°C and after the viscosity measurement in the high pressure capillary rheometer at 160°C and certain shear rates, the feedstock is injection molded (Battenfeld) at 160°C, which is followed by debinding process, including chemical (in n-Hexane) and thermal steps, and 2h sintering at different temperatures. Flow paths in the machinery parts, rheological properties of binding system, fiber content and the fiber orientation have significant effect on the flow behavior of the feedstock, fiber -orientation, -distribution & -length, which are crucial to understand the properties of end-parts like mechanical reinforcement of the fibers. The fibers in the sintered parts are ca. 200 μm in average length. The fibers in the feedstock show different orientations depending on the part-geometry and the green bodies have different densities depending on sintering temperature, amount of dispersant and fiber orientation.


2007 ◽  
Vol 334-335 ◽  
pp. 337-340
Author(s):  
Jin Woo Kim ◽  
Dong Gi Lee

The study for strength calculation of one way fiber-reinforced composites and the study measuring precisely fiber orientation distribution were presented. Need the systematic study for the DB that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed. Therefore, this study investigated what affect the fiber content ratio and fiber orientation distribution have on the strength of composite sheet after making Glass Mat Reinforced Thermoplastic Sheet by changing fiber orientation distribution with the fiber content ratio. The result of this study will become a guide to design data of the most suitable parts design or fiber reinforced polymeric composite sheet that uses the Glass Mat Reinforced Thermoplastic Sheet in industry part, because it was conducted in terms of developing products. It studied the effect the fiber orientation distribution has on tensile strength of Glass Mat Reinforced Thermoplastic Sheet and achieved this result below. The increasing range of the value of Glass Mat Reinforced Thermoplastic Sheet’s tensile strength in the fiber orientation direction is getting wider as the fiber content increases.


Sign in / Sign up

Export Citation Format

Share Document