scholarly journals Measurement of Three Dimensional Fiber Orientation Distribution in Fiber Reinforced Thermoplastics Using Scanning Acoustic Microscopy.

Seikei-Kakou ◽  
1997 ◽  
Vol 9 (11) ◽  
pp. 913-919 ◽  
Author(s):  
Munehiro KAWAMURA ◽  
Satoru MORITA ◽  
Minoru TANAKA ◽  
Teruo TACHIBANA

2017 ◽  
Vol 52 (13) ◽  
pp. 1781-1797 ◽  
Author(s):  
Bhisham N Sharma ◽  
Diwakar Naragani ◽  
Ba Nghiep Nguyen ◽  
Charles L Tucker ◽  
Michael D Sangid

We present a detailed methodology for experimental measurement of fiber orientation distribution in injection-molded discontinuous fiber composites using the method of ellipses on two-dimensional cross sections. Best practices to avoid biases occurring during surface preparation and optical imaging of carbon-fiber-reinforced thermoplastics are discussed. A marker-based watershed transform routine for efficient image segmentation and the separation of touching fiber ellipses is developed. The sensitivity of the averaged orientation tensor to the image sample size is studied for the case of long-fiber thermoplastics. A Mori–Tanaka implementation of the Eshelby model is then employed to quantify the sensitivity of elastic stiffness predictions to biases in the fiber orientation distribution measurements.



2005 ◽  
Vol 297-300 ◽  
pp. 2897-2902 ◽  
Author(s):  
Jin Woo Kim ◽  
Jung Ju Lee ◽  
Dong Gi Lee

The study for strength calculation of one way fiber-reinforced composites and the study measuring precisely fiber orientation distribution were presented. However, because the DB that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed, we need the systematic study for that. Therefore, in this study, we investigated what effect the fiber content ratio and fiber orientation distribution have on the strength of composite sheet after making fiber reinforced polymeric composite sheet by changing fiber orientation distribution with the fiber content ratio. The result of this study will become a guide to design data of the most suitable parts design or fiber reinforced polymeric composite sheet that uses the fiber reinforced polymeric composite sheet in industry spot, because it was conducted in terms of developing products. We studied the effect the fiber orientation distribution has on tensile strength of fiber reinforced polymeric composite material and achieved this results below. We can say that the increasing range of the value of fiber reinforced polymeric composite’s tensile strength in the direction of fiber orientation is getting wider as the fiber content ratio increases. It shows that the value of fiber reinforced polymeric composite’s tensile strength in the direction of fiber orientation 90° is similar with the value of polypropylene’s intensity when fiber orientation function is J= 0.7, regardless of the fiber content ratio. Tensile strength of fiber reinforced polymeric composite is affected by the fiber orientation distribution more than by the fiber content ratio.



2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Isabel Fiebig ◽  
Volker Schoeppner

The welding factors are significantly lower in welding of fiber reinforced thermoplastics than in welding of unreinforced thermoplastics due to the fiber orientation in the weld. This paper presents results from investigations on the influence of the initial fiber orientation on the weld strength in hot plate and vibration welding for glass fiber reinforced polypropylene and polyamide 6. Injection molded specimens are compared to specimens with main initial fiber orientation being longitudinal and transverse to the joining direction. The results of CT analysis of the fiber orientation in the weld show the opportunity to achieve a higher weld strength by using specimens with fibers being initially oriented longitudinally to the joining direction. The influence of the initial fiber orientation in the parts to be welded on the weld strength in hot plate welding is more distinct than in vibration welding.



2018 ◽  
Vol 32 (11) ◽  
pp. 1525-1546 ◽  
Author(s):  
Yue Mu ◽  
Anbiao Chen ◽  
Guoqun Zhao ◽  
Yujia Cui ◽  
Jiejie Feng ◽  
...  

The fiber-reinforced polymer composites are important alternative for conventional structural materials because of their excellent comprehensive performance and weight reduction. The mechanical properties of such composite materials are mainly determined by the fiber orientation induced through practical manufacturing process. In the study, a through process modeling (TPM) method coupling the microstructure evolution and the mechanical properties of fiber-reinforced composites in practical processing is presented. The numerical methodology based on the finite volume method is performed to investigate three-dimensional forming process in the injection molding of fiber-reinforced composites. The evolution of fiber orientation distribution is successfully predicted by using a reduced strain closure model. The corresponding finite volume model for TPM is detailedly derived and the pressure implicit with splitting of operators (PISO) algorithm is employed to improve computational stability. The flow-induced multilayer structure is successfully predicted according to essential flow characteristics and the fiber orientation distribution. The mechanical properties of such anisotropy composites is further calculated based on the stiffness analysis and the Tandon–Weng model. The improvement of mechanical properties in each direction of the injection molded product are evaluated by using the established mathematical model and numerical algorithm. The influences of the geometric structure of injection mold cavity, the fiber volume fractions, and the fiber aspect ratios on the mechanical properties of composite products are further discussed. The mathematical model and numerical method proposed in the study can be successfully adopted to investigate the structural response of composites in practical manufacturing process that will be helpful for optimum processing design.



2013 ◽  
Vol 785-786 ◽  
pp. 981-984 ◽  
Author(s):  
Zan Huang ◽  
Jin Ping Qu ◽  
Ji Wei Geng ◽  
Shu Feng Zhai ◽  
Shi Kui Jia

An orientation distribution function is adopted to describe three-dimensional orientation distribution of short fibers suspensions in extensional flow. A mathematical model of evolution process on fiber orientation distribution function is established by analytical method. Numerical simulation is also used to describe two and three dimensional orientation distribution of fibers. Therefore, analytical solution of differential equation on forecast fiber orientation distribution is deduced.





Sign in / Sign up

Export Citation Format

Share Document