scholarly journals A novel methodology for hydrogel water content determination by EPR: the basis for real-time monitoring of controlled drug release and hydrogel swelling and degradation

2021 ◽  
pp. 107187
Author(s):  
Ana Vesković ◽  
Đura Nakarada ◽  
Ana Popović Bijelić
Nanoscale ◽  
2020 ◽  
Vol 12 (16) ◽  
pp. 8679-8686 ◽  
Author(s):  
Yuting Zhu ◽  
Qian Zeng ◽  
Qiang Zhang ◽  
Kai Li ◽  
Xiaoli Shi ◽  
...  

A multifunctional hybrid hydrogel with dual thermo- and near-infrared light responsiveness for controlled drug release and real-time monitoring.


2015 ◽  
Vol 51 (32) ◽  
pp. 6948-6951 ◽  
Author(s):  
Yanfeng Zhang ◽  
Qian Yin ◽  
Jonathan Yen ◽  
Joanne Li ◽  
Hanze Ying ◽  
...  

Anin vitroandin vivodrug-reporting system is developed for real-time monitoring of drug release via the analysis of the concurrently released near-infrared fluorescence dye.


2021 ◽  
Author(s):  
Biswajit Roy ◽  
Rakesh Mengji ◽  
Samrat Roy ◽  
Bipul Pal ◽  
Avijit Jana ◽  
...  

In recent times, organelle-targeted drug delivery systems gained tremendous attention due to the site specific delivery of active drug molecules resulting in enhanced bioefficacy. In this context, the phototriggered drug delivery system (DDS) for releasing an active molecule is superior as it provides spatial and temporal control over the release. So far, near infrared (NIR) light responsive organelle targeted DDS has not yet been developed. Hence, we introduced a two-photon NIR-light responsive lysosome targeted ʽAIE + ESIPTʼ active single component DDS based on naphthalene chromophore. The Two-photon absorption cross-section of our DDS is 142 GM at 850 nm. The DDS was converted into pure organic nanoparticles for biological applications. Our nano-DDS is capable of selective targeting, AIE-luminogenic imaging, and drug release within the lysosome. In vitro studies using cancerous cell lines showed that our single component photoresponsive nanocarrier exhibited enhanced cytotoxicity and real-time monitoring ability of the drug release.


2008 ◽  
Vol 7 (5) ◽  
pp. 409-414 ◽  
Author(s):  
Gunnar Myhr

The primary objective of this analysis is to provide the theoretical framework for a novel multimodal cancer treatment system emphasizing the use of ultrasound as a synergistic drug release mechanism, real time monitoring by MRI of hyperthermic, pO2, and ultrasound induced released effects. The aim is to provide a cure for the 20% of cancer victims who will die of complications from local solid tumors. Adjuvant therapy usually refers to surgery preceding or following chemotherapy and/or ionizing radiation treatment to decrease the risk of recurrence, but the absolute benefit for survival obtained with adjuvant therapy compared to control is only approximately 6%. Tumor hypoxia represents a primary therapeutic concern, besides multi-drug resistance (MDR), because it can reduce the effectiveness of drugs and radiotherapy; well-oxygenated cells require one-third the dose of hypoxic cells to achieve a given level of cell killing. The era of systemic and indiscriminate chemotherapeutic drug delivery into both healthy and pathologic tissues is near an end. Targeted drug delivery using nanoparticles is emerging as the new vehicle, either as a single treatment option, as part of adjuvant procedures or as a component of a multimodal cancer treatment system. There are more than 100 nanosized liposomes or particles, and conjugated anticancer agents in various stages of preclinical and clinical development. Active targeting can be achieved by site-specific delivery or site-specific triggering. Ultrasound can be utilized as both a site triggering and synergistic mechanism in drug release. The process can be monitored using MRI by a physical process called cavitation. An analysis of low frequency ultrasound exposure in combination with liposomally encapsulated doxorubicin (Caelyx) on Balb/c nude mice inoculated with a WiDr (human colon cancer) tumor cell line provided tumor growth inhibition of 30–40%. Mild hyperthermia causes mean intratumor pO2 to increase by 25% and enhances tumor radiosensitization. Hyperthermia causes the extravasation of liposome nanoparticles in deep tumor regions. Ionizing radiation improves the distribution and uptake of drugs. Liposomally encapsulated drugs and ultrasound mediated hyperthermia have been proven to circumvent MDR effects. Hyperthermic effects and pO2 monitoring of bodily fluid have been performed by MRI. It is hypothesized that increased vascularization and subsequent increase in pO2 levels to hypoxic regions, and monitoring of drug release through cavitation, can facilitate optimized real time concomitant or sequential treatments of drug therapy, hyperthermia, ionizing radiation, etc., before or after surgery. An improved therapeutic index with the use of the outlined system seems probable.


2008 ◽  
Vol 124 (4) ◽  
pp. 2485-2485
Author(s):  
Lucie Somaglino ◽  
Guillaume Bouchoux ◽  
Jean‐Louis Mestas ◽  
Adrien Matias ◽  
Jean‐Yves Chapelon ◽  
...  

2014 ◽  
Vol 15 (4) ◽  
pp. 1355-1364 ◽  
Author(s):  
Feng Qiu ◽  
Dali Wang ◽  
Qi Zhu ◽  
Lijuan Zhu ◽  
Gangsheng Tong ◽  
...  

2018 ◽  
Vol 2 (10) ◽  
pp. 1791-1798 ◽  
Author(s):  
Yao Kang ◽  
Wen Sun ◽  
Jiangli Fan ◽  
Zimu Wei ◽  
Suzhen Wang ◽  
...  

Hydroxyapatite–doxorubicin nanotheranostic agents are used for tumor-targeted chemotherapy, providing a platform for ratiometric real-time tracking of drug release.


2017 ◽  
Vol 43 (3) ◽  
pp. 228-239
Author(s):  
Hakan Ayhan ◽  
Fatma Ayhan

Abstract Objective: In the scope of presented work, synthesis of water based acrylate hydrogels, characterization, and their usage in controlled drug release systems were aimed to investigate. Methods: Synthesis of acrylate based hydrogels that have different properties was carried out by free radical photopolymerization using photoinitiator. Because of its high biocompatibility, 2-hydroxyethyl metacrylate (HEMA) was used as monomer. Then drug release experiments were performed in pH 7.4 and 1.2 buffer solutions with certain ionic strength while the dynamic swelling behaviors were also determined. In the last part of the work, drug activities of synthesized drug-loaded hydrogels were tested in mediums containing Staphylococcus aureus and Pseudomonas aeruginosa bacteria cultures. Results: ATR-FTIR spectrums of all synthesized hydrogels were analyzed. The characteristic O-H, C-H, C=O, C-O tension vibrations bands were observed in the spectrums of the hydrogels. The rate of drug release in acidic pH 1.2 for two types of hydrogels was observed to be much faster than at pH 7.4. It was determined that hydrogel swelling ratio decrease with increasing monomer ratio. All drug loaded hydrogels were effective to inhibit the growth of both two bacterial strains. Conclusion: Hydrogels synthesized were found to be suitable for the controlled drug delivery applications.


Talanta ◽  
2012 ◽  
Vol 88 ◽  
pp. 631-637 ◽  
Author(s):  
Mira Kim ◽  
Ji Hye Seo ◽  
Won Il Jeon ◽  
Mi-Yeon Kim ◽  
Keunchang Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document