Definition of a cavitation index for real time monitoring during in vitro liposomal drug release.

2008 ◽  
Vol 124 (4) ◽  
pp. 2485-2485
Author(s):  
Lucie Somaglino ◽  
Guillaume Bouchoux ◽  
Jean‐Louis Mestas ◽  
Adrien Matias ◽  
Jean‐Yves Chapelon ◽  
...  
2015 ◽  
Vol 51 (32) ◽  
pp. 6948-6951 ◽  
Author(s):  
Yanfeng Zhang ◽  
Qian Yin ◽  
Jonathan Yen ◽  
Joanne Li ◽  
Hanze Ying ◽  
...  

Anin vitroandin vivodrug-reporting system is developed for real-time monitoring of drug release via the analysis of the concurrently released near-infrared fluorescence dye.


2021 ◽  
Author(s):  
Biswajit Roy ◽  
Rakesh Mengji ◽  
Samrat Roy ◽  
Bipul Pal ◽  
Avijit Jana ◽  
...  

In recent times, organelle-targeted drug delivery systems gained tremendous attention due to the site specific delivery of active drug molecules resulting in enhanced bioefficacy. In this context, the phototriggered drug delivery system (DDS) for releasing an active molecule is superior as it provides spatial and temporal control over the release. So far, near infrared (NIR) light responsive organelle targeted DDS has not yet been developed. Hence, we introduced a two-photon NIR-light responsive lysosome targeted ʽAIE + ESIPTʼ active single component DDS based on naphthalene chromophore. The Two-photon absorption cross-section of our DDS is 142 GM at 850 nm. The DDS was converted into pure organic nanoparticles for biological applications. Our nano-DDS is capable of selective targeting, AIE-luminogenic imaging, and drug release within the lysosome. In vitro studies using cancerous cell lines showed that our single component photoresponsive nanocarrier exhibited enhanced cytotoxicity and real-time monitoring ability of the drug release.


Talanta ◽  
2012 ◽  
Vol 88 ◽  
pp. 631-637 ◽  
Author(s):  
Mira Kim ◽  
Ji Hye Seo ◽  
Won Il Jeon ◽  
Mi-Yeon Kim ◽  
Keunchang Cho ◽  
...  

Nanoscale ◽  
2015 ◽  
Vol 7 (32) ◽  
pp. 13503-13510 ◽  
Author(s):  
Jinfeng Zhang ◽  
Shengliang Li ◽  
Fei-Fei An ◽  
Juan Liu ◽  
Shubin Jin ◽  
...  

The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention.


2020 ◽  
Vol 11 (2) ◽  
pp. 425-432 ◽  
Author(s):  
Shegufta Farazi ◽  
Fan Chen ◽  
Henry Foster ◽  
Raelene Boquiren ◽  
Shelli R. McAlpine ◽  
...  

A pH responsive pMAA nanogel that demonstrates high loading capacity and rapid intracellular delivery of hydrophilic peptides.


2021 ◽  
Vol 900 ◽  
pp. 115674
Author(s):  
Muthaiah Annalakshmi ◽  
Sakthivel Kumaravel ◽  
T.S.T. Balamurugan ◽  
Shen-Ming Chen ◽  
Ju-Liang He

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2810 ◽  
Author(s):  
Amir Javan-Khoshkholgh ◽  
Aydin Farajidavar

High-resolution (HR) mapping of the gastrointestinal (GI) bioelectrical activity is an emerging method to define the GI dysrhythmias such as gastroparesis and functional dyspepsia. Currently, there is no solution available to conduct HR mapping in long-term studies. We have developed an implantable 64-channel closed-loop near-field communication system for real-time monitoring of gastric electrical activity. The system is composed of an implantable unit (IU), a wearable unit (WU), and a stationary unit (SU) connected to a computer. Simultaneous data telemetry and power transfer between the IU and WU is carried out through a radio-frequency identification (RFID) link operating at 13.56 MHz. Data at the IU are encoded according to a self-clocking differential pulse position algorithm, and load shift keying modulated with only 6.25% duty cycle to be back scattered to the WU over the inductive path. The retrieved data at the WU are then either transmitted to the SU for real-time monitoring through an ISM-band RF transceiver or stored locally on a micro SD memory card. The measurement results demonstrated successful data communication at the rate of 125 kb/s when the distance between the IU and WU is less than 5 cm. The signals recorded in vitro at IU and received by SU were verified by a graphical user interface.


2008 ◽  
Vol 7 (5) ◽  
pp. 409-414 ◽  
Author(s):  
Gunnar Myhr

The primary objective of this analysis is to provide the theoretical framework for a novel multimodal cancer treatment system emphasizing the use of ultrasound as a synergistic drug release mechanism, real time monitoring by MRI of hyperthermic, pO2, and ultrasound induced released effects. The aim is to provide a cure for the 20% of cancer victims who will die of complications from local solid tumors. Adjuvant therapy usually refers to surgery preceding or following chemotherapy and/or ionizing radiation treatment to decrease the risk of recurrence, but the absolute benefit for survival obtained with adjuvant therapy compared to control is only approximately 6%. Tumor hypoxia represents a primary therapeutic concern, besides multi-drug resistance (MDR), because it can reduce the effectiveness of drugs and radiotherapy; well-oxygenated cells require one-third the dose of hypoxic cells to achieve a given level of cell killing. The era of systemic and indiscriminate chemotherapeutic drug delivery into both healthy and pathologic tissues is near an end. Targeted drug delivery using nanoparticles is emerging as the new vehicle, either as a single treatment option, as part of adjuvant procedures or as a component of a multimodal cancer treatment system. There are more than 100 nanosized liposomes or particles, and conjugated anticancer agents in various stages of preclinical and clinical development. Active targeting can be achieved by site-specific delivery or site-specific triggering. Ultrasound can be utilized as both a site triggering and synergistic mechanism in drug release. The process can be monitored using MRI by a physical process called cavitation. An analysis of low frequency ultrasound exposure in combination with liposomally encapsulated doxorubicin (Caelyx) on Balb/c nude mice inoculated with a WiDr (human colon cancer) tumor cell line provided tumor growth inhibition of 30–40%. Mild hyperthermia causes mean intratumor pO2 to increase by 25% and enhances tumor radiosensitization. Hyperthermia causes the extravasation of liposome nanoparticles in deep tumor regions. Ionizing radiation improves the distribution and uptake of drugs. Liposomally encapsulated drugs and ultrasound mediated hyperthermia have been proven to circumvent MDR effects. Hyperthermic effects and pO2 monitoring of bodily fluid have been performed by MRI. It is hypothesized that increased vascularization and subsequent increase in pO2 levels to hypoxic regions, and monitoring of drug release through cavitation, can facilitate optimized real time concomitant or sequential treatments of drug therapy, hyperthermia, ionizing radiation, etc., before or after surgery. An improved therapeutic index with the use of the outlined system seems probable.


Sign in / Sign up

Export Citation Format

Share Document