Electrical properties of some new high resistivity organic semiconductors in thin films

2005 ◽  
Vol 54 (3) ◽  
pp. 175-181 ◽  
Author(s):  
L. Leontie ◽  
I. Druta ◽  
R. Danac ◽  
M. Prelipceanu ◽  
G.I. Rusu
Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 697
Author(s):  
Yu-He Liu ◽  
Xiao-Yan Liu ◽  
Hui Sun ◽  
Bo Dai ◽  
Peng Zhang ◽  
...  

Here, the electrical properties of NiO thin films grown on glass and Al2O3 (0001) substrates have been investigated. It was found that the resistivity of NiO thin films strongly depends on oxygen stoichiometry. Nearly perfect stoichiometry yields extremely high resistivity. In contrast, off-stoichiometric thin films possess much lower resistivity, especially for oxygen-rich composition. A side-by-side comparison of energy loss near the edge structure spectra of Ni L3 edges between our NiO thin films and other theoretical spectra rules out the existence of Ni3+ in NiO thin films, which contradicts the traditional hypothesis. In addition, epitaxial NiO thin films grown on Al2O3 (0001) single crystal substrates exhibit much higher resistivity than those on glass substrates, even if they are deposited simultaneously. This feature indicates the microstructure dependence of electrical properties.


1995 ◽  
Vol 10 (11) ◽  
pp. 2777-2787 ◽  
Author(s):  
Ashraf R. Khan ◽  
Seshu B. Desu

Thin films of Lead Lanthanum Titanate (PLT) corresponding to 28 at. % of La were prepared by the metal-organic decomposition (MOD) process. The films were fabricated from two solutions of different composition. The composition of the first solution was determined, assuming that the incorporation of La3+ in the PbTiO3 structure gives rise to A-site or Pb vacancies, whereas for the composition of the other solution the creation of B-site or Ti vacancies was assumed. The effect of excess lead on the microstructure and the optical and electrical properties was studied for 0% to 20% excess PbO. The x-ray diffraction patterns of all films at room temperature indicated a cubic structure with a lattice constant of 3.92 Å. Optical and electrical measurements showed the films made assuming B-site vacancies had better properties. In general, excess PbO was found to improve the optical transmittance as well as the electrical properties of films. However, in films assuming the formation of B-site vacancies, PLT showed improved electrical properties only up to 5–10% excess PbO, while higher PbO additions had a deleterious effect. The films had a high resistivity, good relative permittivity, low loss, very low leakage current density, and high charge storage density. A type-B film with 10% excess Pb had a relative permittivity of 1340 at 100 kHz and a charge storage density of around 16.1 μC/cm2 at a field of 200 kV/cm at room temperature.


Author(s):  
J.P.S. Hanjra

Tin mono selenide (SnSe) with an energy gap of about 1 eV is a potential material for photovoltaic applications. Various authors have studied the structure, electronic and photoelectronic properties of thin films of SnSe grown by various deposition techniques. However, for practical photovoltaic junctions the electrical properties of SnSe films need improvement. We have carried out investigations into the properties of flash evaporated SnSe films. In this paper we report our results on the structure, which plays a dominant role on the electrical properties of thin films by TEM, SEM, and electron diffraction (ED).Thin films of SnSe were deposited by flash evaporation of SnSe fine powder prepared from high purity Sn and Se, onto glass, mica and KCl substrates in a vacuum of 2Ø micro Torr. A 15% HF + 2Ø% HNO3 solution was used to detach SnSe film from the glass and mica substrates whereas the film deposited on KCl substrate was floated over an ethanol water mixture by dissolution of KCl. The floating films were picked up on the grids for their EM analysis.


2011 ◽  
Vol 3 (10) ◽  
pp. 1-4 ◽  
Author(s):  
Bushra A Hasan ◽  
◽  
Ghuson H Mohamed ◽  
Amer A Ramadhan

2018 ◽  
Author(s):  
Weikun Zhu ◽  
Erfan Mohammadi ◽  
Ying Diao

Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried out via image analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then employ this program in a case study of meniscus-guided coating of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C<sub>8</sub>-BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C<sub>8</sub>-BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms.


2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


2004 ◽  
Vol 7 (2) ◽  
pp. 363-367 ◽  
Author(s):  
Antonio Leondino Bacichetti Junior ◽  
Manuel Henrique Lente ◽  
Ricardo Gonçalves Mendes ◽  
Pedro Iris Paulin Filho ◽  
José Antonio Eiras

Author(s):  
Yi-Da Ho ◽  
Jing-Ann Lai ◽  
Meng-Hung Tsai ◽  
Cheng-Liang Huang

Sign in / Sign up

Export Citation Format

Share Document