Quantitative Image Analysis of Fractal-like Thin Films of Organic Semiconductors

Author(s):  
Weikun Zhu ◽  
Erfan Mohammadi ◽  
Ying Diao

Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried out via image analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then employ this program in a case study of meniscus-guided coating of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C<sub>8</sub>-BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C<sub>8</sub>-BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms.

2018 ◽  
Author(s):  
Weikun Zhu ◽  
Erfan Mohammadi ◽  
Ying Diao

Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried out via image analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then employ this program in a case study of meniscus-guided coating of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C<sub>8</sub>-BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C<sub>8</sub>-BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms.


2013 ◽  
Vol 311 ◽  
pp. 451-455
Author(s):  
Liang Wen Ji ◽  
Mei Li Tsai

This paper is based on theoretical methods to study the computer simulation and analysis of the growth of semiconductor thin films. First, according to the traditional theory of thin-film growth, the relationship between the growth morphology and the physical parameters are discussed. Then, fractal theory has been applied to improve the diffusion-limited aggregation (DLA) model. And the simulations of the two-dimensional and three-dimensional thin-film growth are proposed. A computer program of the simulation of the thin-film growth is developed with help of MATLAB. Finally, the results of the simulation of the thin-film growth have been analyzed by the fractal dimension and multifractal spectra. The results of this paper can be applied to the dynamic simulation of nanometer thin-film growth, and an effective simulation tool is to provide the semiconductor process.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


2017 ◽  
Vol 5 (21) ◽  
pp. 5090-5095 ◽  
Author(s):  
H. Wang ◽  
B. He ◽  
F. Liu ◽  
C. Stevens ◽  
M. A. Brady ◽  
...  

The first experimental observation of a rare re-entrant transition during COF thin film growth reveals independent nucleation and growth kinetic processes.


2015 ◽  
Vol 119 (48) ◽  
pp. 26968-26979 ◽  
Author(s):  
Tao Xu ◽  
Susanne Mohr ◽  
Max Amende ◽  
Mathias Laurin ◽  
Tibor Döpper ◽  
...  

2021 ◽  
Vol 317 ◽  
pp. 477-482
Author(s):  
Aris Doyan ◽  
Susilawati ◽  
Muhammad Taufik ◽  
Syamsul Hakim ◽  
Lalu Muliyadi

Tin oxide (SnO2) thin film is a form of modification of semiconductor material in nanosize. The thin film study aims to analyze the effect of triple doping (Aluminum, Indium, and Fluorine) on the optical properties of SnO2: (Al + In + F) thin films. Aluminum, Indium, and Fluorine as doping SnO2 with a mass percentage of 0, 5, 10, 15, 20, and 25% of the total thin-film material. The addition of Al, In, and F doping causes the thin film to change optical properties, namely the transmittance and absorbance values ​​changing. The transmittance value is 67.50, 73.00, 82.30, 87.30, 94.6, and 99.80 which is at a wavelength of 350 nm for the lowest to the highest doping percentage, respectively. The absorbance value increased with increasing doping percentage at 300 nm wavelength of 0.52, 0.76, 0.97, 1.05, 1.23, and 1.29 for 0, 5, 10, 15, 20, and 25% doping percentages, respectively. The absorbance value is then used to find the gap energy of the SnO2: (Al + In + F) thin film of the lowest doping percentage to the highest level i.e. 3.60, 3.55, 3.51, 3.47, 3.42, and 3.41 eV. Thin-film activation energy also decreased with values of 2.27, 2.04, 1.85, 1.78, 1.72, and 1.51 eV, respectively for an increasing percentage of doping. The thin-film SnO2: (Al + In + F) which experiences a gap energy reduction and activation energy makes the thin film more conductive because electron mobility from the valence band to the conduction band requires less energy and faster electron movement as a result of the addition of doping.


1991 ◽  
Vol 237 ◽  
Author(s):  
Harry A. Atwater ◽  
C. J. Tsai ◽  
S. Nikzad ◽  
M.V.R. Murty

ABSTRACTRecent progress in low energy ion-surface interactions, and the early stages of ion-assisted epitaxy of semiconductor thin films is described. Advances in three areas are discussed: dynamics of displacements and defect incorporation, nucleation mechanisms, and the use of ion bombardment to modify epitaxial growth kinetics in atrulysurface-selective manner.


2021 ◽  
Vol 42 (11) ◽  
pp. 112101
Author(s):  
Yuming Xue ◽  
Shipeng Zhang ◽  
Dianyou Song ◽  
Liming Zhang ◽  
Xinyu Wang ◽  
...  

Abstract Cd1– x Zn x S thin films were deposited by chemical bath deposition (CBD) on the glass substrate to study the influence of cadmium sulfate concentration on the structural characteristics of the thin film. The SEM results show that the thin film surfaces under the cadmium sulfate concentration of 0.005 M exhibit better compactness and uniformity. The distribution diagrams of thin film elements illustrate the film growth rate changes on the trend of the increase, decrease, and increase with the increase of cadmium sulfate concentration. XRD studies exhibit the crystal structure of the film is the hexagonal phase, and there are obvious diffraction peaks and better crystallinity when the concentration is 0.005 M. Spectrophotometer test results demonstrate that the relationship between zinc content x and optical band gap value E g can be expressed by the equation E g(x) = 0.59x 2 + 0.69x + 2.43. Increasing the zinc content can increase the optical band gap, and the absorbance of the thin film can be improved by decreasing the cadmium sulfate concentration, however, all of them have good transmittance. At a concentration of 0.005 M, the thin film has good absorbance in the 300–800 nm range, 80% transmittance, and band gap value of 3.24 eV, which is suitable for use as a buffer layer for solar cells.


2018 ◽  
Vol 6 (6) ◽  
pp. 1393-1398 ◽  
Author(s):  
Shengbin Nie ◽  
Ao Liu ◽  
You Meng ◽  
Byoungchul Shin ◽  
Guoxia Liu ◽  
...  

In this study, transparent p-type CuCrxOy semiconductor thin films were fabricated using spin coating and integrated as channel layers in thin-film transistors (TFTs).


Author(s):  
Dinesh Pathak ◽  
Sanjay Kumar ◽  
Sonali Andotra ◽  
Jibin Thomas ◽  
Navneet Kaur ◽  
...  

In this study, we have investigated new tailored organic semiconductors materials for the optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin-films are suitable and cheaper than inorganic thin-film. The band gap of organic semiconductors materials can be tuned and mostly lies between 2.0eV to 4eV and the optical absorption edge of organic semiconductors typically lies in between 1.7eV to 3eV. They can be easily tailored by modifying the carbon chain and legends and looks promising for engineering the band gap to harness solar spectrum. In this work, with new tailored organic semiconductors the solution route is explored which is low cost processing method. (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline thin-films are processed by spin coating method with changing concentration such as 0.05 wt% and 0.08 wt%. Thin films of Organic semiconductors were prepared on glass substrate and annealed at 55°C. The structural and optical behaviour of (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline organic semiconductors thin films is studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV-Visible Spectroscopy technique. The XRD data of synthesized sample suggests the Nano crystallinity of the Organic layers. The SEM micrographs shows the dense packing when we increase the wt% 0.05 to 0.08. Analysis of the optical absorption measurements found that the engineered band gap of synthesized thin films are 2.18eV, 2.35eV, 2.36eV, 2.52eV and 2.65eV which suggest suitability for applications of Optoelectronic devices such as solar cell. Such light weight, eco-friendly and disposable new carbon based materials seems to have potential to replace other traditional hazardous heavy materials for future eco-friendly flat fast electronics. Keywords: Thin-film, solar cell, tailored organic semiconductors, XRD, SEM, UV-Vis spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document