Internal ethylene concentrations in apple fruit at harvest affect persistence of inhibition of ethylene production after 1-methylcyclopropene treatment

2014 ◽  
Vol 96 ◽  
pp. 1-6 ◽  
Author(s):  
Seok-Kyu Jung ◽  
Christopher B. Watkins
2011 ◽  
Vol 33 (No. 1) ◽  
pp. 1-6
Author(s):  
J. Goliáš ◽  
A. Němcová ◽  
P. Mýlová

In ten cultivars of apple fruit, ethylene production expressed in μl/kg/h was determined. The cultivar Resista exhibited a higher ethylene production and can be differentiated from other cultivars. The production ranged from 4.2 ± 0.58 μl/kg/h in the case of Meteor cv. up to 131.6 ± 5.5 μl/kg/h in Resista cv. Infected fruit of Topaz cv. had a lower ethylene production at cold storage temperature (3°C) than some healthy fruit. All examined cultivars can be divided into three clusters. Discriminant analysis and canonical correlation analysis of the examined apple fruit led to the determination of healthy and infected fruit. Values of ethylene production were analyzed on intact fruit by using headspace gas analysis by CGC with thermal desorption technique. Carbosieve G was chosen as the adsorbent material for the traps due to its relatively high affinity for light hydrocarbons such as ethylene. For a full trap of ethylene in the enrichment column the sufficient amount of percolating gas is about 0.3 l.  


1977 ◽  
Vol 4 (1) ◽  
pp. 123 ◽  
Author(s):  
DJ Chalmers ◽  
JD Faragher

Ethylene production by immature apple fruit was stimulated by cycloheximide application, u.v. irradiation and wounding. After fruit were treated with 1 and 10 �g ml-1 cycloheximide, the rate of ethylene production increased to 2 and 10 times the control level, respectively. In skin discs cut from whole fruit (wounded tissue), the rate of ethylene production was stimulated to at least 40 times that in whole fruit. This wound-stimulated ethylene production was partially inhibited by an initial application of cycloheximide. Ultraviolet irradiation of whole fruit stimulated the rate of ethylene production to more than 25 times the control rate after 15 min irradiation. In skin discs, u.v. irradiation caused only a 50-100% increase in ethylene production rate. The effects of certain treatments on ethylene were quantitatively comparable with the effects of the same treatments on anthocyanin formation in whole fruit. Ethylene at 30 �l 1-1 stimulated anthocyanin in skin of immature apples by 16%. Possible mechanisms by which ethylene may stimulate anthocyanin synthesis are discussed.


HortScience ◽  
2009 ◽  
Vol 44 (6) ◽  
pp. 1637-1640 ◽  
Author(s):  
Valeria Sigal Escalada ◽  
Douglas D. Archbold

The impact of heat plus aminoethoxyvinylglycine (AVG) treatments alone or in combination on ripening of four apple cultivars has been studied. A solution of AVG was applied to ‘Lodi’, ‘Senshu’, ‘Redchief Delicious’, and ‘Red Fuji’ apple trees ≈4 weeks before normal harvest at 124 g·ha−1 a.i. After harvest, half of each group of control and AVG-treated fruit was heated at 38 °C for 4 days and then stored at 4 °C for 30 days. After cold storage, AVG and heat individually suppressed ethylene production of ‘Senshu’ and ‘Redchief Delicious’ but not of ‘Lodi’ or ‘Red Fuji’. The combination of AVG with heat treatment reduced ethylene production the most consistently in each cultivar except ‘Lodi’, suggesting some additive effect of the treatments. The respiration rate after cold storage was not consistently affected by any treatment. AVG alone and with heat maintained firmness of ‘Lodi’, AVG plus heat maintained it in ‘Senshu’, but neither ‘Redchief Delicious’ nor ‘Red Fuji’ firmness responded to the treatments. AVG-treated ‘Lodi’ and ’Redchief Delicious’ fruit, heated fruit of all cultivars, and AVG plus heat in all had lower titratable acidity than controls after cold storage. Although there were no effects of any treatment on fruit soluble solids concentration, the combined treatment increased the soluble solids:titratable acidity ratio of all cultivars, although heat or AVG alone had no consistent effects. Total ester production by ‘Redchief Delicious’ peel tissue after cold storage was reduced 44% by AVG and 70% or more by heat and AVG plus heat. There were no differences in peel alcohol acyltransferase activity among the treatments, supporting the hypothesis that substrate availability was the limiting factor for ester synthesis in treated fruit. Overall, heat plus AVG treatment did not provide any advantage over each alone for maintaining apple fruit quality during short-term cold storage.


2005 ◽  
Vol 130 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Lihua Fan ◽  
Jun Song ◽  
Charles F. Forney ◽  
Michael A. Jordan

Ethanol concentration and chlorophyll fluorescence (CF) were measured as signs of heat stress in apple fruit [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. `McIntosh', `Cortland', `Jonagold', and `Northern Spy' apples were placed in trays and exposed to 46 °C for 0, 4, 8, or 12 hours. Following treatments, fruit were stored in air at 0 °C and evaluated after 0, 1, 2, or 3 months. Ethanol and ethylene production, CF, peel and flesh browning, firmness, skin color, soluble solids, and titratable acidity were measured. Increases in ethanol were apparent immediately following 12-hour heat treatments as well as after 3 months. After 3 months, ethanol concentrations were 16-, 52-, 6-, and 60-fold higher in `McIntosh', `Cortland', `Jonagold', and `Northern Spy' apples than in controls, respectively. The concentrations of ethanol accumulated reflected the degree of heat-induced fruit injury. Heat treatments reduced ethylene production relative to control values. After 3 months of storage ethylene production of fruit exposed to 46 °C for 12 h was <0.48 μmol·kg-1·h-1 compared to >4.3 μmol·kg-1·h-1 for controls. Heat treatments also reduced CF which was expressed as Fv/Fm, where Fv is the difference between the maximal and the minimal fluorescence (Fm - Fo), and Fm is the maximal fluorescence. After 3 months storage at 0 °C, Fv/Fm was ≈0.2 in fruit held at 46 °C for 12 hours compared with 0.5-0.6 for control fruit. Exposure to 46 °C for 12 hours caused severe peel and flesh browning in all cultivars. Severity of peel and flesh browning increased with increasing duration of heat treatment and subsequent storage at 0 °C. `Northern Spy' apple fruit were most susceptible to heat stress based on the degree of flesh browning. Heat treatments of 8 and 12 hours reduced firmness of `McIntosh', `Cortland', and `Northern Spy', but not `Jonagold' apples. Hue angle of the green side of fruit was also reduced in `Cortland', Jonagold' and `Northern Spy' apples receiving the 8- and 12-hour treatments. Heat treatments caused a decrease in fruit tiratable acidity, but had no effect on soluble solids content. The increase in ethanol production and decrease in CF correlated with heat-induced injury, and were apparent before browning was visually apparent. Ethanol and CF have the potential to be used to nondestructively predict the severity of injury that develops during storage.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 536D-536 ◽  
Author(s):  
J. Song ◽  
M.S. Tian ◽  
D.R. Dilley ◽  
R.M. Beaudry

Aroma production by apple fruit is an important quality criterion and has been found to be a fruit-ripening-related process. 1-Methylcyclopropene (1-MCP), an effective ethylene action inhibitor, was used to study the relationship between volatile biosynthesis, ethylene action, and fruit ripening in `Golden Delicious' apple fruit. Pre-climacteric fruit were treated with 1-MCP vapors at a concentration of 500 parts per billion (v/v) at 23°C. 1-MCP prevented the climacteric rise of ethylene production, respiration, and volatile production, while untreated fruits developed typical climacteric changes in ethylene production, respiration and volatile production. Applying ethylene at 15–20 parts per million for 24 hr 11 days after 1-MCP treatment could not overcome the effect of 1-MCP, suggesting that 1-MCP inhibited ethylene action irreversibly. Interestingly, when 1-MCP-treated tissue were fed butanol and butyric acid, they converted these compounds to their corresponding esters butylacetate and butylbutanoate. Thus precursor supply is apparently limiting and appears to be ethylene-dependent.


Author(s):  
Alejandra Ferenczi ◽  
Nobuko Sugimoto ◽  
Randolph M. Beaudry

The volatile profile of ‘Redchief Delicious’ apple (Malus ×domestica Borkh.) fruit was evaluated at 18 time points from 3 weeks before to 8 weeks after onset of autocatalytic ethylene production to capture the dynamics associated with development from mature green to senescent fruit. Minor amounts of ester production began several days before the onset of ethylene production. Ester production rose rapidly as internal ethylene levels increased beyond 22 nmol·L−1 (0.5 µL·L−1). Peak ester production roughly coincided with maximum ethylene synthesis, declining thereafter. Ester production was further evaluated according to the acid- (alkanoate) and alcohol- (alkyl) derived portions of the ester. The maximum rate of production for a given ester tended to occur later in development as the chain length of the alcohol-derived portion declined. The production rate for many esters paralleled the rate of emanation of their respective alcohol substrates, suggesting that availability of the alcohols limits ester production more than availability of the acid substrates. Combining production rates with sensory descriptors and human sensitivity to individual volatiles permitted approximations of aroma sensations likely engendered by the fruit throughout ripening. Overripe and alcoholic sensations are predicted to increase 2 weeks after the initiation of ripening in response to an increase in the production of ethyl esters. Acetate esters predominated, comprising 50% to 80% of esters throughout maturation and ripening, indicating that the substrate acetyl-CoA may be at saturating levels for alcohol acyl transferase (AAT) at the final step of ester formation. Acetate feeding did not enhance ester production, although label from 13C-acetate was extensively incorporated into esters. The data are consistent with the action of multiple AAT isozymes differing in activity and substrate preference. Incorporation of labeled 13C-acetate into precursors of esters, alcohols, and acids, reflected ester biosynthesis via 1- and 2-carbon chain elongation pathways in ripening ‘Redchief Delicious’ apple fruit.


2020 ◽  
Author(s):  
Yinglin Ji ◽  
Yi Qu ◽  
Zhongyu Jiang ◽  
Xin Su ◽  
Pengtao Yue ◽  
...  

ABSTRACTThe plant hormone ethylene is important for the ripening of climacteric fruit, such as pear (Pyrus ussuriensis), and the brassinosteroid (BR) class of phytohormones affects ethylene biosynthesis during ripening, although via an unknown molecular mechanism. Here, we observed that exogenous BR treatment suppressed ethylene production during pear fruit ripening, and that the expression of the transcription factor PuBZR1 was enhanced by epibrassinolide (EBR) treatment during pear fruit ripening. PuBZR1 was shown to interact with PuACO1, which converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and suppress its activity. We also observed that BR-activated PuBZR1 bound to the promoters of PuACO1 and of PuACS1a, which encodes ACC synthase, and directly suppressed their transcription. Moreover, PuBZR1 suppressed the expression of transcription factor PuERF2 by binding its promoter, and PuERF2 bound to the promoters of PuACO1 and PuACS1a. We concluded that PuBZR1 indirectly suppresses the transcription of PuACO1 and PuACS1a through its regulation of PuERF2. Ethylene production and the expression profiles of the corresponding apple (Malus domestica) homologs showed similar changes following EBR treatment. Together, these results suggest that BR-activated BZR1 suppresses ACO1 activity and the expression of ACO1 and ACS1a, thereby reducing ethylene production during pear and apple fruit ripening. This likely represents a conserved mechanism by which exogenous BR suppresses ethylene biosynthesis during climacteric fruit ripening.One-sentence summaryBR-activated BZR1 suppresses ACO1 activity and expression of ACO1 and ACS1a, which encode two ethylene biosynthesis enzymes, thereby reducing ethylene production during pear and apple fruit ripening.


HortScience ◽  
2006 ◽  
Vol 41 (6) ◽  
pp. 1462-1465 ◽  
Author(s):  
David R. Rudell ◽  
James P. Mattheis

`Golden Delicious' apple [Malus sylvestris var. domestica (Borkh.)] cortex disks suspended in solutions containing a nitric oxide (•NO) donor [S-nitrosoglutathione (GSNO) or sodium nitroprusside (SNP)], •NO gas, or nitrite (KNO2) were used to identify impacts of •NO on ethylene production and NO2– on •NO and ethylene production. Treatment with GSNO or SNP reduced ethylene biosynthesis compared with control treatments containing equimolar concentrations of oxidized glutathione (GSSG) or Na4(CN)6 respectively. Apple disk exposure to •NO gas did not impact ethylene production. Treatment with NO2– resulted in increased •NO production and decreased ethylene biosynthesis. Generation of •NO increased linearly whereas ethylene generation decreased exponentially with increasing NO2– treatment concentration. •NO was enhanced in autoclaved tissue disks treated with NO2–, suggesting that its production is produced at least in part by nonenzymatic means. Although this evidence shows •NO is readily generated in apple fruit disks by NO2– treatment, and ethylene synthesis is reduced by •NO/NO2– generated in solution, the exact nature of •NO generation from NO2– and ethylene synthesis modulation in apple fruit disks remains to be elucidated.


2017 ◽  
Vol 8 ◽  
Author(s):  
Meiru Jia ◽  
Ping Du ◽  
Ning Ding ◽  
Qing Zhang ◽  
Sinian Xing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document