Multi-scale chemical characterization of a ground metallurgical-grade silicon powder

2015 ◽  
Vol 270 ◽  
pp. 98-103 ◽  
Author(s):  
Eloi Kewes ◽  
Franck Dahlem ◽  
Sandrine Bec ◽  
Nicolas Estime ◽  
Khalid Hoummada ◽  
...  
2011 ◽  
Vol 324 ◽  
pp. 324-327 ◽  
Author(s):  
Sarah Darwiche ◽  
Malek Benmansour ◽  
Nir Eliezer ◽  
Daniel Morvan

Laser-induced breakdown spectroscopy (LIBS) has been employed for the fast and reliable chemical characterization of silicon used for the photovoltaic industry. Silicon for photovoltaic panels is subject to certain constraints on its purity, and notably must contain low concentration of boron. The use of LIBS could be advantageous because it allows rapid and simultaneous multi-elemental chemical analysis of silicon without any sample preparation. LIBS was applied to boron analysis and a detection limit of 0.23 ppmw was found for optimized gas and pressure conditions.


2011 ◽  
Vol 391-392 ◽  
pp. 697-702 ◽  
Author(s):  
Xiang Yu Zou ◽  
Hong Wei Xie ◽  
Yu Chun Zhai ◽  
Xiao Chuan Lang ◽  
Jun Zhang

Studied on electrorefining metallurgical grade silicon to prepare solar grade silicon(SOG-Si) with electrochemical method in molten KCl and NaF mixture salt. Molten KCl and NaF mixture salt as electrolyte, the metallurgical grade silicon as anode and little metal nickel crucible for collecting silicon powder as cathode, electrorefining experiments were performed at 800 and 2.0V for 14h under dry argon atmosphere. The results showed that the metallurgical grade silicon could be dissolved and deposited on the cathode through molten potassium chloride (KCl) and sodium fluoride (NaF) mixture salt electrolyte. The nickel crucible was full of deposit, which was pure silicon by XRD and EDS. Purity of refined silicon was close to 99.99%, most of impurities like B and P were reduced significantly. Impurity level of silicon was reduced to the desired range for SOG-Si by advancement of the materials for the cell components.


1990 ◽  
Vol 5 (9) ◽  
pp. 1894-1899 ◽  
Author(s):  
J. C. Anglézio ◽  
C. Servant ◽  
F. Dubrous

Optical metallography, scanning electron microscopy, electron microprobe analysis, and transmission electron microscopy were used to characterize metallurgical grade silicon, produced in an electric are furnace. Coincidence fraction determinations were assumed to be Σ7 and Σ9 when grain boundaries are underlined by precipitated phases and Σ3 when they are not. The study of intergranular compounds was emphasized; ten compounds were found, the main ones being Si2Ca, Si8Al6Fe4Ca, Si2Al2Ca, Si2FeTi, and Si2.4Fe (α leboitc). The precipitation of these compounds was discussed according to the principal impurity concentrations in silicon. The crystalline structure of Si8Al6Fe4Ca was determined to be triclinic with a = 1.3923 nm, b = 1.3896 nm, c = 1.3900 nm and α = 92.4°, β = 110.3°, γ = 119.9°.


2011 ◽  
Vol 675-677 ◽  
pp. 105-108
Author(s):  
Rui Xun Zou ◽  
Da Chuan Jiang ◽  
Wei Dong ◽  
Zheng Gu ◽  
Yi Tan

The electron beam injection (EBI) process involves offering electrons around silicon powder, whose surface was oxidized, and subsequently the powder is washed by HF acid so as to remove the SiO2 film. The new electron beam injection process, in which micro electric filed formed between Si and SiO2 film will accelerate impurities diffusion from Si to SiO2 film, was developed and applied to eliminate the transition-metal impurities of MG-Si. It is proved to be effective to remove transition-metal impurities from metallurgical grade silicon (MG-Si). By applying the electron beam injection method, the removal rate of 10% to 59% was achieved during the refining process. The efficiency of impurity removal originates from two aspects: the impurity concentration gradient on both sides of Si/SiO2 interface; the micro electric field formed from Si to SiO2 film. A further increase in the removal rate can be realized by controlling the processing parameters.


2013 ◽  
Vol 813 ◽  
pp. 7-10 ◽  
Author(s):  
Xiao Ming Li ◽  
Yan Mei Dang ◽  
Wen Feng Li ◽  
Jun Xue Zhao ◽  
Ya Ru Cui

As a pre-treatment process for producing solar-grade silicon, hydrometallurgical method could remove the most of metallic impurities of metallurgical-grade silicon, which is a hopeful technology to provide solar energy material independence of the Siemens skill. Factors such as the hydrochloric mass fraction, temperature, reaction time, and particle size of silicon powders were investigated in the impurities removal experiments under the condition of mechanical stirring. The leached samples were analyzed by ICP and SEM. The optimum parameters, hydrochloric mass fraction 5%, temperature 80°C, reaction time 9h, particle size 75μm, were determined by single factor experiments and orthogonal experiments. The 86.1% of Fe, 68.1% of Al, 85.9% of Ca and 25.9% of B impurity was removed from metallurgical-grade silicon powder.


Author(s):  
Hajar Akhzouz ◽  
Hassan El Minor ◽  
Amine Bendarma ◽  
Hanane El Minor

Silicon ◽  
2012 ◽  
Vol 4 (4) ◽  
pp. 289-295 ◽  
Author(s):  
Jijun Wu ◽  
Wenhui Ma ◽  
Bin Yang ◽  
Dachun Liu ◽  
Yongnian Dai

Sign in / Sign up

Export Citation Format

Share Document