Improving particle dispersion characteristics with a novel cleaning screen: Parameter design and numerical simulation

Author(s):  
Yibo Li ◽  
Yang Xu ◽  
Tao Cui ◽  
Dongxing Zhang ◽  
Hongfei Fan ◽  
...  
2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


2020 ◽  
Vol 51 (4) ◽  
pp. 1370-1383
Author(s):  
Junchen Li ◽  
Xutao Huang ◽  
Guocai Ma ◽  
Junwei Wang ◽  
Jixiang Pan ◽  
...  

1994 ◽  
Vol 116 (1) ◽  
pp. 154-163 ◽  
Author(s):  
Lian-Ping Wang ◽  
David E. Stock

Lagrangian statistical quantities related to the dispersion of heavy particles were studied numerically by following particle trajectories in a random flow generated by Fourier modes. An experimental fluid velocity correlation was incorporated into the flow. Numerical simulation was performed with the use of nonlinear drag. The simulation results for glass beads in a nondecaying turbulent air showed a difference between the horizontal dispersion coefficient and vertical dispersion coefficient. This difference was related to the differences of both the velocity scale and the time scale between the two direction. It was shown that for relatively small particle sizes the particle time scale ratio dominates the value of the diffusivity ratio. For large particles, the velocity scale ratio reaches a value of 1/2 and thus fully determines the diffusivity ratio. Qualitative explanation was provided to support the numerical findings. The dispersion data for heavy particles in grid-generated turbulences were successfully predicted by the simulation when flow decay was considered. As a result of the reduction in effective inertia and the increase in effective drift caused by the flow decay, the particle dispersion coefficient in decaying flow decreases with downstream location. The particle rms fluctuation velocity has a slower decay rate than the fluid rms velocity if the drift parameter is large. It was also found that the drift may substantially reduce the particle rms velocity.


2011 ◽  
Vol 211-212 ◽  
pp. 1147-1151
Author(s):  
A Fang Jin ◽  
Zhi Chun Yang ◽  
Mamtimin Gheni

Smoothed particle hydrodynamics (SPH) method is used to simulate the lift-off phenomenon of sand particles in the air flow. Whether the sand particles make any form of movement in the air flow, firstly, they always jump into the air from a standstill condition, so it is helpfull to understand the saltation mechanism of sand particles. Because the computitional region is discreted into particles in the SPH method, the movement of each particle can represent the machnical behavior of sand particles if the particle dispersion has the same characteristic with the sand particles. The foundmental theory of SPH method and its key elements are reviewed in detail, such as the kernel function, the choice of smoothing length and their influence on the numerical simulation results.In this study a numerical simulation model of wind-blown sand two-phase flow using SPH model is proposed and then the model is discreted to simulate the take-off process of sand particles with adquate boundary conditions. Simulation results show that the proposed model can be used to simulate the dynamic characteristics of sand particles in lift-off.


2020 ◽  
pp. 039139882097750
Author(s):  
Monica M Kerr ◽  
Terence Gourlay

Current paediatric valve replacement options cannot compensate for somatic growth, leading to an obstruction of flow as the child outgrows the prosthesis. This often necessitates an increase in revision surgeries, leading to legacy issues into adulthood. An expandable valve concept was modelled with an inverse relationship between annulus size and height, to retain the leaflet geometry without requiring additional intervention. Parametric design modelling was used to define certain valve parameter aspect ratios in relation to the base radius, Rb, including commissural radius, Rc, valve height, H and coaptation height, x. Fluid-structure simulations were subsequently carried out using the Immersed Boundary method to radially compress down the fully expanded aortic valve whilst subjecting it to diastolic and systolic loading cycles. Leaflet radial displacements were analysed to determine if valve performance is likely to be compromised following compression. Work is ongoing to optimise valvular parameter design for the paediatric patient cohort.


1992 ◽  
Vol 114 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Lian-Ping Wang ◽  
D. E. Stock

Numerical experiments can be used to study heavy particle dispersion by tracking particles through a numerically generated instantaneous turbulent flow field. In this manner, data can be generated to supplement physical experiments. To perform the numerical experiments efficiently and accurately, the time step used when tracking the particles through the fluid must be chosen correctly. After finding a suitable time step for one particular simulation, the time step must be reduced as the total integration time increases and as the free-fall velocity of the particle increases. Based on the numerical calculations, we suggest that the nonlinear drag be included in a numerical simulation if the ratio of the particle’s Stokes free-fall velocity to the fluid rms velocity is greater than two.


Sign in / Sign up

Export Citation Format

Share Document