scholarly journals How to Meet the Minimum Energy Performance Requirements of Technical Conditions in Year 2021?

2015 ◽  
Vol 111 ◽  
pp. 202-208 ◽  
Author(s):  
Szymon Firląg
2019 ◽  
Vol 70 (01) ◽  
pp. 76-82
Author(s):  
GROSU MARIAN-CATALIN ◽  
ALEXAN ALEXANDRU

Wool fibers are a natural, renewable, sustainable, low impact on the environment, with huge potential for humanity. Given the exponential growth of the Earth’s population, raw materials are getting less and less, a business based on the processing of renewable raw materials, especially wool fibers, has a high chance of survival and development. Romania, with an overwhelming agrarian economy, has a population of nearly 10 million sheep and a production of over 16,000 tons of medium and coarse wool. Given the need to set minimum energy performance requirements for new buildings and for the major renovation of existing ones at European Union level, the development of new materials and technologies is necessary, so that the opportunity to capitalize on wool for buildings be a workable item on long term. This paper presents the experimental results of the characteristics of 4 non-conventional textile structures (UTS) made of 100% wool fibers, designed and developed at S.C. Cora Trading & Service SRL, on their existing adapted technology. The fibrous blend used, consisting of both tanning wool and coarse shared wool allow development of innovative structures, with potential of use for their thermal insulation capacity and great potential of sustainable development of the manufacturer.


2015 ◽  
Vol 725-726 ◽  
pp. 1564-1571
Author(s):  
Radmila Sinđić Grebović ◽  
Yulija Zolotova

Energy Performance of Buildings Directive (EPBD, 2010/31/EU) requires Member States to introduce minimum energy performance requirements for buildings, and set these requirements based on a cost-optimal methodology. This methodology introduces the prerequisite to consider the global lifetime costs of buildings to shape their future energy performance requirements. Methodology predicts that, beside the investment costs, the operational, maintenance, disposal and energy saving costs of buildings should be taken into account.This paper discusses the use methodology related to nearly Zero-Energy Buildings (nZEB) requirements.


2021 ◽  
Vol 42 (3) ◽  
pp. 349-369
Author(s):  
Robert Cohen ◽  
Karl Desai ◽  
Jennifer Elias ◽  
Richard Twinn

The UKGBC Net Zero Carbon Buildings Framework was published in April 2019 following an industry task group and extensive consultation process. The framework acts as guidance for achieving net zero carbon for operational energy and construction emissions, with a whole life carbon approach to be developed in the future. In consultation with industry, further detail and stricter requirements are being developed over time. In October 2019, proposals were set out for industry consultation on minimum energy efficiency targets for new and existing commercial office buildings seeking to achieve net zero carbon status for operational energy today, based on the performance levels that all buildings will be required to achieve by 2050. This was complemented by modelling work undertaken by the LETI network looking into net zero carbon requirements for new buildings. In January 2020 UKGBC published its guidance on the levels of energy performance that offices should target to achieve net zero and a trajectory for getting there by 2035. This paper describes the methodology behind and industry perspectives on UKGBC’s proposals which aim to predict the reduction in building energy intensity required if the UK’s economy is to be fully-powered by zero carbon energy in 2050. Practical application: Many developers and investors seeking to procure new commercial offices or undertake major refurbishments of existing offices are engaging with the ‘net zero carbon’ agenda, now intrinsic to the legislative framework for economic activity in the UK. A UKGBC initiative effectively filled a vacuum by defining a set of requirements including energy efficiency thresholds for commercial offices in the UK to be considered ‘net zero carbon’. This paper provides all stakeholders with a detailed justification for the level of these thresholds and what might be done to achieve them. A worked example details one possible solution for a new office.


Author(s):  
Robson L. Silva ◽  
Bruno V. Sant′Ana ◽  
José R. Patelli ◽  
Marcelo M. Vieira

This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.


Author(s):  
Siti Fatihah Salleh ◽  
Mohd Eqwan Roslan ◽  
Aishah Mohd Isa ◽  
Mohd Faizal Basri Nair ◽  
Siti Syafiqah Salleh

2019 ◽  
Vol 111 ◽  
pp. 03040
Author(s):  
Touraj Ashrafian ◽  
Zerrin Yilmaz ◽  
Nazanin Moazzen

Recast version of Energy Performance of Building Directive (EPBD-Recast) obligate member states to keep the cost analysis in parallel with the energy analysis during the renovation actions for the existing building by taking the cost-optimal level of minimum energy performance requirement to the account. Although this cost-optimal level is indicating the minimum cost level for a period, it can provide buildings’ owners with an enormous initial cost. One of the most challenging barriers to energy efficient and cost-optimal renovation of existing buildings is the reluctance of owners to involve in their project as an investor due to the high cost of application. Particularly in developing countries, such reluctance is more tangible as the governments are not capable of providing enough financial incentives for owners due to a large number of buildings that should be renovated and small available budget. A proper solution for the problem is to divide necessary actions for each building to certain sub-actions and apply them as a step-by-step renovation project. On the other hand, the progressive application of renovation activities has some restrictions. It is necessary to define the due amount for households and keep the cost of each step within the payable range. Moreover, the low rate of building renovation which affects the EU goals can be improved remarkably by application of step-by-step actions not only by increasing the number of owners’ contributions but also by improving the time of implementation, proper distribution of skilled labours and directed economic resources. This paper aims to assess the step-by-step application of the energy efficient renovation actions through energy and cost analysis under Turkey’s climatic, economic and sociological conditions. One of 26 reference residential buildings in Turkey is analysed in this paper. The due amount for each step is defined, and some renovation actions and their combinations applied to the case building and the results compared with the base condition. Then a proper combination of measures established based on the cost-optimal analyses. These appropriately combined actions are then divided into some sub-actions; following this, cost and energy studies are conducted again to determine the appropriate arrangement of sub-actions.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 237 ◽  
Author(s):  
S. Soutullo ◽  
E. Giancola ◽  
M. J. Jiménez ◽  
J. A. Ferrer ◽  
M. N. Sánchez

Based on the European energy directives, the building sector has to provide comfortable levels for occupants with minimum energy consumption as well as to reduce greenhouse gas emissions. This paper aims to compare the impact of climate change on the energy performance of residential buildings in order to derive potential design strategies. Different climate file inputs of Madrid have been used to quantify comparatively the thermal needs of two reference residential buildings located in this city. One of them represents buildings older than 40 years built according to the applicable Spanish regulations prior to 1979. The other refers to buildings erected in the last decade under more energy-restrictive constructive regulations. Three different climate databases of Madrid have been used to assess the impact of the evolution of the climate in recent years on the thermal demands of these two reference buildings. Two of them are typical meteorological years (TMY) derived from weather data measured before 2000. On the contrary, the third one is an experimental file representing the average values of the meteorological variables registered in Madrid during the last decade. Annual and monthly comparisons are done between the three climate databases assessing the climate changes. Compared to the TMYs databases, the experimental one records an average air temperature of 1.8 °C higher and an average value of relative humidity that is 9% lower.


Author(s):  
Wojciech P Hunek ◽  
Marek Krok

In this article, an advanced study concerning the energy cost of the perfect control algorithm is provided. An application of different nonunique matrix inverses into perfect control law has resulted in remarkable influence on both control and state signals. Following the newly obtained issues, covering the minimum-energy behavior, a new related criterion is proposed here. Based on deterministic norm we can, in a simple way, estimate the crucial energy performance. Simulation examples made in MATLAB/Simulink environment show the high potential of a new approach considered in the article.


2019 ◽  
Vol 282 ◽  
pp. 02071
Author(s):  
Catarina F. T. Ribeiro ◽  
Nuno M. M. Ramos ◽  
Inês Flores-Colen

Throughout history, it has always been recognised that the spaces in-between in dwellings have the advantage of working as environmental buffer spaces. The aim of this paper is to provide a literature review of the different spaces in-between in dwellings – balconies, shaded balconies and glazed balconies - and their impacts on comfort and on energy performance. The effects of the spaces in-between depend on their design, on the characteristics of the buildings and on the surroundings. They have important impacts on the four factors that contribute to the indoor environmental quality: thermal comfort, lighting comfort, acoustic comfort and indoor air quality. These factors are interrelated and the lack of balance between them can lead to poor indoor environmental conditions and to excessive energy consumption. Based on the review, a synthesis of the key environmental parameters that can be used as indicators for those factors is established. The impacts of spaces in-between on the factors and sub-factors of indoor environment are defined, considering different climatic regions. A holistic approach that conciliates all the above-mentioned factors should be a contribution to the design of spaces in-between in both new construction and rehabilitation projects, in order to achieve better indoor environment with minimum energy consumption.


Sign in / Sign up

Export Citation Format

Share Document