Effect of surface sealant agents on the surface roughness and color stability of denture base materials

2016 ◽  
Vol 116 (4) ◽  
pp. 610-616 ◽  
Author(s):  
Onur Sahin ◽  
Aysegül Koroglu ◽  
Doğu Ömür Dede ◽  
Burak Yilmaz
2021 ◽  
pp. 096739112110055
Author(s):  
Gunce Ozan ◽  
Meltem Mert Eren ◽  
Cansu Vatansever ◽  
Ugur Erdemir

Surface sealants are reported to ensure surface smoothness and improve the surface quality of composite restorations. These sealants should also reduce the bacterial adhesion on composite surfaces however, there is not much information regarding their performance on bulk-fill composite materials. The aim of this study was to evaluate the effect of surface sealant application on surface roughness and bacterial adhesion of various restorative materials. Disc-shaped samples were prepared from a compomer, a conventional composite and three bulk-fill composites. Specimens of each group were divided into two groups (n = 9): with/without surface sealant (Biscover LV, [BLV]). Surface roughness values were examined by profilometry and two samples of each group were examined for bacterial adhesion on a confocal laser scanning microscope (CLSM). Bacterial counts were calculated by both broth cultivation and microscopic images. Results were analyzed with one-way ANOVA and Bonferroni/Dunn tests. Following the BLV application, there was a decrease in the surface roughness values of all groups however, only Tetric N-Ceram Bulk and Beautifil-Bulk groups showed significantly smoother surfaces (p < 0.001). There were no significant differences among material groups without BLV application. Evaluating bacterial adhesion after BLV application, conventional composite had the lowest values among all followed by the compomer group. Beautifil-Bulk had significantly the highest bacterial adhesion (p < 0.05), followed by Tetric N-Ceram Bulk group. Without BLV application, there was no significant difference among bacterial adhesion values of groups (p > 0.05). CLSM images showed cell viability in groups. Bulk-fill composites showed higher bacterial adhesion than conventional composite and compomer materials. The surface sealant was found to be highly effective in lowering bacterial adhesion, but not so superior in smoothing the surfaces of restorative materials. So, surface sealants could be used on the restorations of patients with high caries risk.


2019 ◽  
Vol 53 (2) ◽  
pp. 158-167 ◽  
Author(s):  
Cagatay Dayan ◽  
Melahat Celik Guven ◽  
Burc Gencel ◽  
Canan Bural

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3305
Author(s):  
Pablo Kraemer Fernandez ◽  
Alexey Unkovskiy ◽  
Viola Benkendorff ◽  
Andrea Klink ◽  
Sebastian Spintzyk

(1) Background: To date, no information on the polishability of milled and 3D-printed complete denture bases has been provided, which is relevant in terms of plaque accumulation. (2) Methods: three groups (n = 30) were manufactured using the cold-polymerization polymethilmethacrilate, milling (SM) and 3D printing (AM). 10 specimens of each group were left untreated (reference). 10 more specimens were pre-polished (intermediate polishing) and 10 final specimens were highgloss polished. An additional 20 specimens were 3D printed and coated with the liquid resin (coated), 10 of which were additionally polished (coated + polished). For each group Ra and Rz values, gloss value and REM images were obtained. (3). The “highgloss-polished” specimens showed statistically lower Ra and Rz values in the SM, followed by AM and conventional groups. In the AM group statistically lower surfaces roughness was revealed for highgloss-polished, “coated + polished”, and “coated” specimens, respectively. (4) Conclusions: The milled specimens demonstrated superiors surface characteristics than 3D printed and conventionally produced after polishing. The polished specimens demonstrated superior surface characteristics over coated specimens. However, the surface roughness by both polished and coated specimens was within the clinically relevant threshold of 0.2 µm.


2011 ◽  
Vol 22 (5) ◽  
pp. 365-368 ◽  
Author(s):  
Fernanda Valentini ◽  
Simone Gomes Dias de Oliveira ◽  
Guilherme Zdradk Guimarães ◽  
Renata Pereira de Sousa Barbosa ◽  
Rafael Ratto de Moraes

This study investigated the effect of sealant application on the color stability of composite resin restorations. Cavities in bovine incisors were restored with composite resin (Opallis; FGM) and the teeth were assigned to 4 groups (n=10). A sealant (Fill Glaze; Vigodent) was applied over the restorations of 2 groups. Baseline color measurements based on the CIEL*a*b* system were carried out using a spectrophotometer. Half the number of specimens was immersed in distilled water, and half was immersed in coffee 4 h/day. Color measurements were repeated after 1 h, 24 h, 7 days and 3 months. Data for each immersion solution were separately subjected to a two-way repeated measures ANOVA and Tukey’s test (α=0.05). For the group without sealant immersed in water, no significant differences were observed among the periods (p≥0.138), but the color was different compared with baseline (p<0.001). For the group with sealant application, the periods baseline, 1 h and 3 months presented similar results (p≥0.924). For groups immersed in coffee, when the sealant was not used, no significant differences were detected between the baseline and the periods 1 h and 24 h (p≥0.499), but the color changed significantly thereafter (p≤0.003). In the group with sealant, significant differences were detected for all periods compared with each other (p<0.001). In conclusion, application of sealant dramatically increased the staining of the restorations exposed to coffee.


2018 ◽  
Vol 43 (4) ◽  
pp. 408-415 ◽  
Author(s):  
VC Ruschel ◽  
VS Bona ◽  
LN Baratieri ◽  
HP Maia

SUMMARY The objective of this study was to evaluate the effect of surface sealants and polishing delay time on a nanohybrid resin composite roughness and microhardness. Eighty disc specimens were made with a nanohybrid resin (Esthet-X HD, Dentsply). The specimens were divided into two groups (n=40) according to polishing time: immediate, after 10 minutes; delayed, after 48 hours. Each group was subdivided into four groups (n=10), according to the surface treatment: CG, control–rubber points (Jiffy Polishers, Ultradent); PP, rubber points + surface sealant (PermaSeal, Ultradent); PF, rubber points + surface sealant (Fortify, Bisco); PB, rubber points + surface sealant (BisCover, Bisco). Surface roughness (Ra) and microhardness (50 g/15 seconds) were measured. Surface morphology was analyzed by scanning electron microscopy and atomic force microscopy. The data were analyzed statistically using one-way analysis of variance and the Games-Howell post hoc test (α=0.05). PermaSeal roughness (G2) in the delayed polishing group was significantly higher (p=0.00) than that of the other groups. No difference was observed among the groups between immediate and delayed polishing (p=1.00), except for PermaSeal (p=0.00). Moreover, PermaSeal showed the lowest microhardness values (p=0.00) for immediate polishing. Microhardness was higher at delayed polishing for all the surface treatments (p=0.00) except Fortify (p=0.73). Surface smoothness similar to polishing with rubber points was achieved when surface sealants were used, except for PermaSeal surface sealant, which resulted in a less smooth resin composite surface. However, surface sealant application did not significantly improve composite resin microhardness.


2019 ◽  
Author(s):  
Özge Gürbüz ◽  
Alev Özsoy ◽  
Benin Dikmen ◽  
Meltem Mert Eren ◽  
Aylin Çilingir

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mohammed M. Gad ◽  
Reem Abualsaud ◽  
Shaimaa M. Fouda ◽  
Ahmed Rahoma ◽  
Ahmad M. Al-Thobity ◽  
...  

Statement of Problem. Novel polymethyl methacrylate (PMMA) containing zirconium dioxide nanoparticles (nano-ZrO2) was suggested as a denture base material but there is a lack of information regarding denture cleanser effects. Objectives. This study aimed to evaluate denture cleanser effects on color stability, surface roughness, and hardness of PMMA denture base resin reinforced with nano-ZrO2. Materials and Methods. A total of 420 specimens were fabricated of unreinforced and nano-ZrO2 reinforced acrylic resin at 2.5% and 5%, resulting in 3 main groups. These groups were further subdivided (n = 10) according to immersion solution (distilled water, Corega, sodium hypochlorite, and Renew) and immersion duration. Surface roughness, hardness, and color were measured at baseline (2 days-T0) in distilled water and then after 180 and 365 days of immersion (T1 & T2) in water or denture cleansing solutions. Data was collected and analyzed using two-way ANOVA followed by Bonferroni post hoc test (α = 0.05). Results. Surface roughness increased significantly after denture cleanser immersion of unmodified and nano-ZrO2-modified PMMA materials while hardness decreased ( P < 0.001 ). The denture cleansers significantly affected the color of both PMMA denture bases ( P < 0.001 ). The immersion time in denture cleansers significantly affected all tested properties ( P < 0.001 ). Within denture cleansers, NaOCl showed the highest adverse effects ( P < 0.05 ) while Renew showed the least adverse effects. Conclusion. Denture cleansers can significantly result in color change and alter the surface roughness and hardness of denture base resin even with ZrO2 nanoparticles addition. Therefore, they should be carefully used.


2012 ◽  
Vol 3 (2) ◽  
pp. 171-175 ◽  
Author(s):  
Farideh Bahrani ◽  
Mahroo Vojdani ◽  
Anahita Safari ◽  
Ghasem Karampoor

ABSTRACT Purpose The aim of this study was to evaluate mechanical property hardness and surface roughness (Ra) of different polymerization acrylic resins used for denture bases. Materials and methods A total of 30 specimens were prepared and divided in two groups. A total of 15 samples were processed by the compression molding technique using Meliodent (heatcured). Another 15 samples were processed with cold-cured resin Futura Gen via the injection molding technique. Hardness testing was conducted using a Vickers hardness tester. The Ra test was performed by a profilometer. Data were analyzed using the independent sample t-test and differences were statistically significant at the 0.05 level. Results The Vickers hardness numbers (VHN) were 20.8 ± 2.39 for Meliodent and 21.18 ± 1.42 for FuturaGen, which was not significantly different (p > 0.05). The Ra of Meliodent was 0.92 ± 0.23 µm and for FuturaGen it was 0.84 ± 0.37 µm. There were no significant changes in roughness. Conclusion The hardness and Ra of Meliodent and FuturaGen were not significantly different. Therefore, we recommend the use of FuturaGen for manufacturing denture base materials. How to cite this article Bahrani F, Safari A, Vojdani M, Karampoor G. Comparison of Hardness and Surface Roughness of Two Denture bases Polymerized by Different Methods. World J Dent 2012;3(2):171-175.


Sign in / Sign up

Export Citation Format

Share Document