Simplifying COSHH and improving chemical safety

2020 ◽  
Vol 137 ◽  
pp. 66-72
Author(s):  
Stuart Morgan ◽  
Mark Stewart ◽  
Tasha Bennett
Keyword(s):  
Human Ecology ◽  
2017 ◽  
pp. 46-52 ◽  
Author(s):  
L. M. Sosedova ◽  
T. M. Filippova

2019 ◽  
Vol 485 (2) ◽  
pp. 229-233
Author(s):  
V. P. Kalyabina ◽  
E. N. Esimbekova ◽  
I. G. Torgashina ◽  
K. V. Kopylova ◽  
V. A. Kratasyuk

We formulated the principles of designing bioluminescent enzyme tests for assessing the quality of complex media which consist in providing the maximum sensitivity to potentially toxic chemicals at a minimal impact of uncontaminated complex media. The developed principles served as a basis for designing a new bioluminescent method for an integrated rapid assessment of chemical safety of fruits and vegetables which is based on using the luminescent bacterium enzymes (NAD(P)H:FMN oxidoreductase and luciferase) as a test system.


2021 ◽  
Vol 99 (4) ◽  
pp. 37-37
Author(s):  
Jyllian Kemsley
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1502
Author(s):  
Eliezer Velásquez ◽  
Sebastián Espinoza ◽  
Ximena Valenzuela ◽  
Luan Garrido ◽  
María José Galotto ◽  
...  

The deterioration of the physical–mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1178
Author(s):  
Zhenhua Wang ◽  
Beike Zhang ◽  
Dong Gao

In the field of chemical safety, a named entity recognition (NER) model based on deep learning can mine valuable information from hazard and operability analysis (HAZOP) text, which can guide experts to carry out a new round of HAZOP analysis, help practitioners optimize the hidden dangers in the system, and be of great significance to improve the safety of the whole chemical system. However, due to the standardization and professionalism of chemical safety analysis text, it is difficult to improve the performance of traditional models. To solve this problem, in this study, an improved method based on active learning is proposed, and three novel sampling algorithms are designed, Variation of Token Entropy (VTE), HAZOP Confusion Entropy (HCE) and Amplification of Least Confidence (ALC), which improve the ability of the model to understand HAZOP text. In this method, a part of data is used to establish the initial model. The sampling algorithm is then used to select high-quality samples from the data set. Finally, these high-quality samples are used to retrain the whole model to obtain the final model. The experimental results show that the performance of the VTE, HCE, and ALC algorithms are better than that of random sampling algorithms. In addition, compared with other methods, the performance of the traditional model is improved effectively by the method proposed in this paper, which proves that the method is reliable and advanced.


Author(s):  
Imran Shah ◽  
Tia Tate ◽  
Grace Patlewicz

Abstract Motivation Generalized Read-Across (GenRA) is a data-driven approach to estimate physico-chemical, biological or eco-toxicological properties of chemicals by inference from analogues. GenRA attempts to mimic a human expert’s manual read-across reasoning for filling data gaps about new chemicals from known chemicals with an interpretable and automated approach based on nearest-neighbors. A key objective of GenRA is to systematically explore different choices of input data selection and neighborhood definition to objectively evaluate predictive performance of automated read-across estimates of chemical properties. Results We have implemented genra-py as a python package that can be freely used for chemical safety analysis and risk assessment applications. Automated read-across prediction in genra-py conforms to the scikit-learn machine learning library's estimator design pattern, making it easy to use and integrate in computational pipelines. We demonstrate the data-driven application of genra-py to address two key human health risk assessment problems namely: hazard identification and point of departure estimation. Availability and implementation The package is available from github.com/i-shah/genra-py.


Author(s):  
Gholamreza Masoumi ◽  
Mohammad Maniey ◽  
Hamidreza Aghababaeian ◽  
Abbas Ostadtaghizadeh ◽  
Ladan Araghi Ahvazi

Abstract Dezful is the capital of Dezful County, a city in Khuzestan Province, Iran. On August 12, 2017, after a chlorine gas leakage in Dezful, more than 475 people were affected by chlorine gas, and they all suffered from respiratory complications. A lot of problems were encountered in the preparation of the relief forces and organization of the blueprint on how to respond to the incident, such as lack of knowledge on establishment of danger zone, lack of warning system, lack of proper triage and absence of decontamination plans, lack of special chemical safety outfit and respiratory equipment for rescuers, lack of instructions for proper handling, lack of knowledge in dealing with this type of disaster, and inappropriate evacuation skills and failure to cordon off and insure the location of the incident. Although the initial measures to arrest this crisis was performed based on the health system’s instructions of the country with regard to all the possible risks, lack of a comprehensive inter-organizational program and prevention plans, lack of control plans, lack of adequate preparation and response to chemical poisoning, lack of foresight, lack of a risk plan, and lack of an intervention plan for these incidents were the reasons for the damages and problems encountered after the crisis.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
F Madia ◽  
A Worth ◽  
M Whelan ◽  
R Corvi

Abstract The rising rates of cancer incidence and prevalence identified by the WHO are of serious concern. The scientific advances of the past twenty years have helped to describe major properties of the cancer disease, enabling therapies that are more sophisticated. It has become clear that the management of relevant risk factors can also significantly reduce cancer occurrence worldwide. Public health policy actions cannot be decoupled from environmental policy actions, since exposure to chemicals through air, soil, water and food can contribute to cancer as well as other chronic diseases. Furthermore, due to the increasing global trend of chemical production including novel compounds, chemical exposure patterns are foreseen to change, posing high demands on chemical safety assessment, and creating potential protection gaps. The safety assessment of carcinogenicity needs to evolve to keep pace with changes in the chemical environment and cancer epidemiology. The presentation focusses on EC-JRC recommendations and future strategies for carcinogenicity safety assessment. This also includes discussion on how the traditional data streams of regulatory toxicology, together with new available assessment methods can inform, along with indicators of public health status based on biomonitoring and clinical data, a more holistic human-relevant and impactful approach to carcinogenicity assessment and overall prevention of cancer disease.


Sign in / Sign up

Export Citation Format

Share Document