Application of analytical solution of advection-dispersion-reaction model to predict the breakthrough curve and mass transfer zone for the biosorption of heavy metal ion in a fixed bed column

2020 ◽  
Vol 137 ◽  
pp. 58-65 ◽  
Author(s):  
Ronbanchob Apiratikul
2021 ◽  
Vol 11 (4) ◽  
pp. 4114-4130

Adsorption through waste adsorbents is one of the developing technologies used for treating textile wastewater. The present study explores the possible outcome of Eucalyptus camaldulensis biomass as an adsorbent for removing crystal violet dye from aqueous solutions. Eucalyptus camaldulensis biomass was used as such and used in fixed bed column mode to testify its potential at different parameters. Effect of different constraints like bed height (cm), flow rate (mlmin-1), initial dye concentration (mgL-1), and pH were studied along with breakthrough curve and exhaust time. Maximum breakthrough curve and exhaust time and utilization of mass transfer zone were observed at bed height of 20 cm. However, the promising results are obtained at higher dye concentration (50 mgL-1), lower flow rate (1 mlmin-1), and at lower pH of 5. This study reveals promising results at acidic pH. This study reflects that adsorption capacity and breakthrough curve favor lower acidic pH. The adsorption data in batch mode follow the Langmuir isotherm and best fit to pseudo-second-order reaction kinetics. The breakthrough curve and mass transfer zone are individually testified, and the breakthrough curve obeys the assumptions of the Thomas model, and R2 (0.933-0.997) values confirm the data that its best fit with the Thomas model.


Author(s):  
Mohd Danish ◽  
Vijay Parthasarthy ◽  
Mohammed K. Al Mesfer

The rising CO2 concentration has prompted the quest of innovative tools to reduce its effect on the environment. A comparative adsorption study using sustainable low-cost date pits-derived activated carbon and molecular sieve has been carried out for CO2 separation. The adsorb ents were characterized for surface area and morphological properties. The outcomes of flow rate, temperature and initial adsorbate concentration on adsorption performance were examined. The process effectiveness was investigated by breakthrough time, adsorbate loading, efficiency, utilized bed height, mass transfer zone and utilization factor. The immensely steep adsorption response curves demonstrate acceptable utilization of adsorbent capability under breakthrough condition. The adsorbate loading 73.08 mg/g is achieved with an 0.938 column efficiency for developed porous activated carbon at 298 K. The reduced 1.20 cm length of mass transfer zone with enhanced capacity utilization factor equal 0.97 at 298 K with Cin = 5% signifies better adsorption performance for date pits-derived adsorbent. The findings recommend that produced activated carbon is greatly promising to adsorb CO2 in fixed bed column under continuous mode.


2020 ◽  

<p>The temperature, feed rate, length of mass transfer zone, utilization factor and partial pressure are the parameters considered for fixed bed sorption of CO2 from N2/CO2 mixture. The breakthrough time relies strongly on the temperature and feed rate. The prolonged breakthrough and saturation times have been realized for AC. The response curves of AC are vastly steep signifying the maximal utilization of bed capacity at the breakpoint. In general, the length of MTZ increases with raised temperature and feed flow rate. The capacity utilization factor reduces with raised temperature and feed flow rate. A utilization factor of 0.919 was determined for AC. The maximal capacity for CO2 reduces significantly with an increased temperature. The maximal capacities of 32.99 gm CO2/Kg was determined at a temperature of 298 K for AC. The capacity improves considerably with CO2 partial pressure and AC exhibited higher adsorption capacity compared to SG. The capacity improves considerably with increased feed rates and maximal capacity of 39.14 g CO2/Kg adsorbent was determined for AC at the feed rate of 8.33 x10-3 m3/sec. Owing to higher sorption capacity and utilization factor, the AC may be used for economical separation of CO2 from N2/CO2 mixture</p>


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2345
Author(s):  
Ilse Paulina Verduzco-Navarro ◽  
Nely Rios-Donato ◽  
Carlos Federico Jasso-Gastinel ◽  
Álvaro de Jesús Martínez-Gómez ◽  
Eduardo Mendizábal

The removal of Cu(II) ions from aqueous solutions at a pH of 5.0 was carried out using fixed-bed columns packed with alginate-chitosan (Alg-Ch) or alginate-chitosan sulfate (Alg-ChS) hydrogel beads. The effect of the initial Cu(II) concentration, flow rate, pH, and height of the column on the amount of Cu removed by the column at the breakpoint and at the exhaustion point is reported. The pH of the solution at the column’s exit was initially higher than that at the entrance, and then decreased slowly. This pH increase was attributed to proton transfer from the aqueous solution to the amino and COO− groups of the hydrogel. The effect of operating conditions on the mass transfer zone (MTZ) and the length of the unused bed (HLUB) is reported. At the lower flow rate and lower Cu(II) concentration used, the MTZ was completely developed and the column operated efficiently; by increasing column height, the MTZ has a better opportunity to develop fully. Experimental data were fitted to the fixed-bed Thomas model using a non-linear regression analysis and a good correspondence between experimental and Thomas model curves was observed.


2006 ◽  
Vol 20 (3) ◽  
pp. 959-963 ◽  
Author(s):  
Binlin Dou ◽  
Bingbing Chen ◽  
Jinsheng Gao ◽  
Xingzhong Sha

2017 ◽  
Vol 18 ◽  
pp. 150-158 ◽  
Author(s):  
Devendra Kumar Singh ◽  
Vijay Kumar ◽  
Sweta Mohan ◽  
Daraksha Bano ◽  
Syed Hadi Hasan

2016 ◽  
Vol 830 ◽  
pp. 38-45 ◽  
Author(s):  
Leonardo Hadlich de Oliveira ◽  
Joziane Gimenes Meneguin ◽  
Edson Antonio da Silva ◽  
Maria Angélica Simões Dornellas de Barros ◽  
Pedro Augusto Arroyo ◽  
...  

In this work, experimental data of CO2 capture by adsorption was determined gravimetrically, at 30 °C and pressures up to 40 bar, and in a fixed bed unit at 20 bar, using NaY as adsorbent. Langmuir, Sips and Tóth isotherm models were used to correlate the equilibrium data. Sips and Tóth models were best fitted allowing estimate the maximum CO2 adsorbed amount. The breakthrough curve was modeled using Linear Driving Force (LDF) and Thomas models. The LDF model represented better the CO2 breakthrough curve than Thomas model. The mass transfer resistance in NaY micropores can be assumed as the limiting step for CO2 adsorption in fixed bed, since the intraparticle mass transfer coefficient of LDF model was smaller than the experimental overall volumetric mass transfer coefficient, although external film resistance is not negligible.


Sign in / Sign up

Export Citation Format

Share Document