scholarly journals Dietary combined supplementation of iron and Bacillus subtilis enhances reproductive performance, eggshell quality, nutrient digestibility, antioxidant capacity, and hematopoietic function in breeder geese

2020 ◽  
Vol 99 (11) ◽  
pp. 6119-6127
Author(s):  
Beibei Zhang ◽  
Fuliang Sui ◽  
Baowei Wang ◽  
Yang Wang ◽  
Wenli Li
2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 101-102
Author(s):  
Jaron R Lewton ◽  
Adrienne Woodward ◽  
Ronny Moser ◽  
Kyan M Thelen ◽  
Adam J Moeser ◽  
...  

Abstract A study was conducted to evaluate the effects of a multi-strain Bacillus subtilis-based direct-fed microbial (DFM) on apparent digestibility and colonic pH of nursery pigs. Eighty pigs, of equal number of barrows and gilts (initial BW: 6.99 ± 1.67 kg), were weaned at 21 ± 1 d and randomly allotted to sixteen pens, with five pigs per pen. Two dietary treatments were implemented, a basal control (CON) and a control plus DFM (DFM). Both diets were corn, soybean meal, and distillers dried grains based, formulated to meet all or exceed all nutritional requirements, and manufactured on site. Diets were fed for 42 days. Performance measures were recorded weekly. On d 21 and 42 of the experiment, one pig per pen was randomly selected and euthanized, with equal number of males and females represented. Digestibility of specific nutrients was evaluated within the duodenum, jejunum, ileum, ascending and distal colon. There were no overall differences in growth performance. Overall means ± SD were 0.51 ± 0.05 kg/d, 0.79 ± 0.05 kg/d and 0.66 ± 0.05 for ADG, ADFI, and G:F, respectively. Digestibility of tryptophan within the jejunum tended (P = 0.06) to increase with addition of DFM, as did cysteine (P = 0.12) and methionine (P = 0.10). The analysis also suggested that the impact of the DFM on the digestibility of amino acids may be early in the nursery phase. The pH of contents in ascending colon, a possible indicator of varied fiber digestion, did not differ. Likewise, no differences were observed between treatment in apparent total tract nitrogen and energy digestibility (analysis of distal colon contents). The addition of a multi-strain Bacillus subtilis-based DFM appears to impact digestibility of select amino acids depending upon location in the gastrointestinal tract.


Author(s):  
Nan Zhang ◽  
Xiaoming Song ◽  
Wenxuan Dong ◽  
Ling Liu ◽  
Zhiying Cui ◽  
...  

Abstract This study was conducted to determine the digestible energy (DE), metabolizable energy (ME), and ileal digestibility of amino acids (AA) of fish protein hydrolysate (FPH), and to evaluate the effects of FPH on the performance of piglets. In Exp. 1, the available energy content of FPH was determined by difference methods: 12 barrows with an initial body weight (BW) of 40.0±2.1kg were randomly assigned into two dietary treatments with six replicates per treatment, the treatments contained a corn basal diet and an experimental diet in which 20% corn was replaced by FPH. The experiment was lasted for 12 days, with 7 days adaptation period followed by 5 days total collection of feces and urine. In Exp. 2, the standardized ileal digestibility (SID) of AA in FPH by the N-free method was determined, 12 barrows (initial BW of 35.3±1.8 kg) with ileal T-cannulas were randomly allotted into two treatments with six replicates per treatment, the dietary treatments consisted of an experimental diet and a N-free diet. The experiment was lasted for 7 days, with 5 days adaptation period followed by 2 days collection of ileal digesta. In Exp. 3, the effect of FPH on the performance of piglets was conducted. 192 piglets (initial BW of 8.10±1.8kg) were randomly allotted into four treatments with six replicates per treatment. The treatments were a control diet with fish meal (FM) and part or all FM was replaced by FPH, got diets containing 2%, 3% or 5% FPH. The experiment lasted for 28 days. Results showed that: In Exp. 1, the DE and ME of FPH were 21.12MJ/kg and 20.28MJ/kg. In Exp. 2, the SID of Lys, Met, Thr and Trp were 79.99%, 87.17%, 68.29%, and 71.53% respectively. In Exp. 3, addition of 3% FPH increased nutrient digestibility and volatile fatty acid content in feces. Addition of 5% FPH increased the average daily feed intake (ADFI), significantly increased (P<0.05) the activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and immunoglobulin A (IgA), while significantly decreased (P<0.05) the average daily gain (ADG). In conclusion, FPH had a high value of digestible energy and ileal digestible essential amino acids, could improve nutrient digestibility, immunity, antioxidant capacity, and intestinal health of piglets, while adverse to nitrogen deposition in piglets.


2020 ◽  
Vol 99 (8) ◽  
pp. 3971-3978
Author(s):  
W.G. Xia ◽  
W. Chen ◽  
K.F.M. Abouelezz ◽  
D. Ruan ◽  
S. Wang ◽  
...  

Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 552 ◽  
Author(s):  
Liu ◽  
Chang ◽  
Wang ◽  
Yin ◽  
Huang ◽  
...  

In order to remove zearalenone (ZEA) detriment—Bacillus subtilis, Candida utilis, and cell-free extracts from Aspergillus oryzae were used to degrade ZEA in this study. The orthogonal experiment in vitro showed that the ZEA degradation rate was 92.27% (p < 0.05) under the conditions that Candida utilis, Bacillus subtilis SP1, and Bacillus subtilis SP2 were mixed together at 0.5%, 1.0%, and 1.0%. When cell-free extracts from Aspergillus oryzae were combined with the above probiotics at a ratio of 2:1 to make mycotoxin-biodegradation preparation (MBP), the ZEA degradation rate reached 95.15% (p < 0.05). In order to further investigate the MBP effect on relieving the negative impact of ZEA for pig production performance, 120 young pigs were randomly divided into 5 groups, with 3 replicates in each group and 8 pigs for each replicate. Group A was given the basal diet with 86.19 μg/kg ZEA; group B contained 300 μg/kg ZEA without MBP addition; and groups C, D, and E contained 300 μg/kg ZEA added with 0.05%, 0.10%, and 0.15% MBP, respectively. The results showed that MBP addition was able to keep gut microbiota stable. ZEA concentrations in jejunal contents in groups A and D were 89.47% and 80.07% lower than that in group B (p < 0.05), indicating that MBP was effective in ZEA biodegradation. In addition, MBP had no significant effect on pig growth, nutrient digestibility, and the relative mRNA abundance of estrogen receptor alpha (ERα) genes in ovaries and the uterus (p > 0.05).


2020 ◽  
Vol 60 (2) ◽  
pp. 242
Author(s):  
Konstantinos C. Mountzouris ◽  
Vasileios Paraskeuas ◽  
Eirini Griela ◽  
George Papadomichelakis ◽  
Konstantinos Fegeros

Context Phytogenic applications in animal nutrition currently attract worldwide scientific attention for their potential to contribute positively to sustainable and high-quality animal production. However, further understanding and substantiation of dietary phytogenic functions is required. Aims The inclusion level of a phytogenic premix (PP) comprising functional flavouring substances from ginger, lemon balm, oregano and thyme was studied for its effects on broiler growth performance, carcass traits, nutrient digestibility, liver and meat total antioxidant capacity (TAC), and lipid oxidation. The expression of genes for nutrient transporter proteins (SGLT1, GLUT2, PEPT1, BOAT and LAT1), for FABP2 involved in cellular fatty acid uptake and metabolism, and for the mTORC1 complex relevant for protein synthesis were profiled along the intestine. Methods One-day-old Cobb broiler chickens (n = 500) were assigned to four treatments with five replicates of 25 chickens each. Starter (1–10 days), grower (11–22 days) and finisher (23–42 days) basal diets were supplemented with four levels of PP inclusion as treatments: 0, 750, 1000 and 2000 mg/kg diet, termed control, PP750, PP1000 and PP2000. Feed and water were available ad libitum. Data were analysed by ANOVA, taking the treatment as fixed effect. Statistically significant (P ≤ 0.05) effects were further analysed and means were compared using Tukey’s HSD test. Polynomial contrasts tested the linear and quadratic effect of PP inclusion levels. Key results Growth performance responses were not improved significantly (P &gt; 0.05) by PP inclusion level. However, carcass (P = 0.030) and breast meat yield (P = 0.023) were higher in PP1000 than in the control. In addition, PP1000 had higher (P = 0.049) apparent metabolisable energy than PP2000 and the control. Increasing PP inclusion level increased breast (P = 0.005), thigh (P = 0.002) and liver (P = 0.040) TAC. Breast and thigh meat TAC reached a plateau at PP1000, whereas liver TAC continued to increase linearly. Lipid oxidation in breast meat and liver was delayed linearly (P ≤ 0.05) with increasing PP inclusion level. Expression of genes SGLT1, GLUT2, PEPT1, BOAT and FABP2 were not affected by PP inclusion. However, PP inclusion affected the expression of LAT1 (P &lt; 0.001) in jejunum and of mTORC1 in duodenum (P = 0.010) and ceca (P = 0.025). In particular, expression increased with increasing PP inclusion level in a linear and quadratic pattern depending on the intestinal segment. Conclusions Overall, PP inclusion at 1000 mg/kg diet improved carcass and breast yield, dietary available energy, and overall meat and liver TAC. Preliminary evidence was highlighted for effects of PP in promoting expression of genes relevant for muscle protein synthesis. Implications This study has contributed new information on effects of a phytogenic premix on broiler meat yield and antioxidant capacity, digestibility, absorption and metabolic functions, further supporting phytogenic benefits for broiler production.


Sign in / Sign up

Export Citation Format

Share Document