scholarly journals Identification and Antiviral Effect of Cherry Valley Duck IRF4

2021 ◽  
pp. 101560
Author(s):  
Xinyu Zhai ◽  
Tianqi Hong ◽  
Tingting Zhang ◽  
Bin Xing ◽  
Jinchao Wang ◽  
...  
Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
A Derksen ◽  
W Hafezi ◽  
A Hensel ◽  
J Kühn

2013 ◽  
Vol 38 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Hong-rui ZHOU ◽  
Qi-wu TANG ◽  
Xing-long YU ◽  
Run-cheng LI ◽  
Wei LUO ◽  
...  

2020 ◽  
Author(s):  
Alejandro Krolewiecki ◽  
Adrián Lifschitz ◽  
Matías Moragas ◽  
Marina Travacio ◽  
Ricardo Valentini ◽  
...  

1980 ◽  
Vol 45 (5) ◽  
pp. 1595-1600 ◽  
Author(s):  
Jaroslav Sluka ◽  
František Šmejkal ◽  
Zdeněk Buděšínský

On recation of cyclooctylamine with the sulfate of S-methylisothiourea cyclooctylguanidine was formed which was acylated with the methyl esters of 5-halogeno- and 3,5-dihalogeno-2-alkoxybenzoic acids. The 1-acyl-3-cyclooctylguanidine I-XVII formed were tested for their antiviral effect against the influenza virus A/NWS, A-PR8 and A2 Singapore, and further against the viruses NDV, herpes 2, vaccinia and WEE. In the in vivo test against the influenza virus A2 Singapore and herpes simplex 1-(5-bromo-2-dodecyloxybenzoyl)-3-cyclooctylguanidine is more active and less toxic than cyclooctylamine and 1-cyclooctylguanidine.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 348
Author(s):  
Francesco Menzella ◽  
Giulia Ghidoni ◽  
Carla Galeone ◽  
Silvia Capobelli ◽  
Chiara Scelfo ◽  
...  

Viral respiratory infections are recognized risk factors for the loss of control of allergic asthma and the induction of exacerbations, both in adults and children. Severe asthma is more susceptible to virus-induced asthma exacerbations, especially in the presence of high IgE levels. In the course of immune responses to viruses, an initial activation of innate immunity typically occurs and the production of type I and III interferons is essential in the control of viral spread. However, the Th2 inflammatory environment still appears to be protective against viral infections in general and in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections as well. As for now, literature data, although extremely limited and preliminary, show that severe asthma patients treated with biologics don’t have an increased risk of SARS-CoV-2 infection or progression to severe forms compared to the non-asthmatic population. Omalizumab, an anti-IgE monoclonal antibody, exerts a profound cellular effect, which can stabilize the effector cells, and is becoming much more efficient from the point of view of innate immunity in contrasting respiratory viral infections. In addition to the antiviral effect, clinical efficacy and safety of this biological allow a great improvement in the management of asthma.


2021 ◽  
pp. 101048
Author(s):  
Tianxu Li ◽  
Xiaofang Hu ◽  
Tingting Zhang ◽  
Xingdong Song ◽  
Huihui Zhang ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 415
Author(s):  
Ashley N. Brown ◽  
Gary Strobel ◽  
Kaley C. Hanrahan ◽  
Joe Sears

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of novel coronavirus disease 2019 (COVID-19), has become a severe threat to global public health. There are currently no antiviral therapies approved for the treatment or prevention of mild to moderate COVID-19 as remdesivir is only approved for severe COVID-19 cases. Here, we evaluated the antiviral potential of a Propylamylatin formula, which is a mixture of propionic acid and isoamyl hexanoates. The Propylamylatin formula was investigated in gaseous and liquid phases against 1 mL viral suspensions containing 105 PFU of SARS-CoV-2. Viral suspensions were sampled at various times post-exposure and infectious virus was quantified by plaque assay on Vero E6 cells. Propylamylatin formula vapors were effective at inactivating infectious SARS-CoV-2 to undetectable levels at room temperature and body temperature, but the decline in virus was substantially faster at the higher temperature (15 min versus 24 h). The direct injection of liquid Propylamylatin formula into viral suspensions also completely inactivated SARS-CoV-2 and the rapidity of inactivation occurred in an exposure dependent manner. The overall volume that resulted in 90% viral inactivation over the course of the direct injection experiment (EC90) was 4.28 µls. Further investigation revealed that the majority of the antiviral effect was attributed to the propionic acid which yielded an overall EC90 value of 11.50 µls whereas the isoamyl hexanoates provided at most a 10-fold reduction in infectious virus. The combination of propionic acid and isoamyl hexanoates was much more potent than the individual components alone, suggesting synergy between these components. These findings illustrate the therapeutic promise of the Propylamylatin formula as a potential treatment strategy for COVID-19 and future studies are warranted.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Liping Sun ◽  
Xueqi Zhang ◽  
Shufa Xu ◽  
Chunsheng Hou ◽  
Jin Xu ◽  
...  

Abstract Background Sacbrood is an infectious disease of the honey bee caused by Scbrood virus (SBV) which belongs to the family Iflaviridae and is especially lethal for Asian honeybee Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV. Currently, there is a lack of an effective antiviral agent for controlling CSBV infection in honey bees. Methods Here, we explored the antiviral effect of a Chinese medicinal herb Radix isatidis on CSBV infection in A. cerana by inoculating the 3rd instar larvae with purified CSBV and treating the infected bee larvae with R. isatidis extract at the same time. The growth, development, and survival of larvae between the control and treatment groups were compared. The CSBV copy number at the 4th instar, 5th instar, and 6th instar larvae was measured by the absolute quantification PCR method. Results Bioassays revealed that R. isatidis extract significantly inhibited the replication of CSBV, mitigated the impacts of CSBV on larval growth and development, reduced the mortality of CSBV-infected A. cerana larvae, and modulated the expression of immune transcripts in infected bees. Conclusion Although the mechanism underlying the inhibition of CSBV replication by the medicine plant will require further investigation, this study demonstrated the antiviral activity of R. isatidis extract and provides a potential strategy for controlling SBV infection in honey bees.


Sign in / Sign up

Export Citation Format

Share Document