scholarly journals Assessment of biofilm formation by Campylobacter spp. isolates mimicking poultry slaughterhouse conditions

2021 ◽  
pp. 101586
Author(s):  
P.M. Araújo ◽  
E. Batista ◽  
M.H. Fernandes ◽  
M.J. Fernandes ◽  
L.T. Gama ◽  
...  
2021 ◽  
Vol 9 (10) ◽  
pp. 2017
Author(s):  
David Šilha ◽  
Sabina Sirotková ◽  
Karolína Švarcová ◽  
Leona Hofmeisterová ◽  
Květa Koryčanová ◽  
...  

Campylobacter jejuni is the most frequent cause of bacterial gastrointestinal food-borne infection worldwide. The transmission of Campylobacter and Arcobacter-like species is often made possible by their ability to adhere to various abiotic surfaces. This study is focused on monitoring the biofilm ability of 69 strains of Campylobacter spp. and lesser described species of the Arcobacteraceae family isolated from food, water, and clinical samples within the Czech Republic. Biofilm formation was monitored and evaluated under an aerobic/microaerophilic atmosphere after cultivation for 24 or 72 h depending on the surface material. An overall higher adhesion ability was observed in arcobacters. A chi-squared test showed no association between the origin of the strains and biofilm activity (p > 0.05). Arcobacter-like species are able to form biofilms under microaerophilic and aerobic conditions; however, they prefer microaerophilic environments. Biofilm formation has already been demonstrated at refrigerator temperatures (5 °C). Arcobacters also showed higher biofilm formation ability at the temperature of 30 °C. This is in contrast to Campylobacter jejuni NP 2896, which showed higher biofilm formation ability at temperatures of 5–30 °C. Overall, the results demonstrated the biofilm formation ability of many strains, which poses a considerable risk to the food industry, medical practice, and human health.


2021 ◽  
Vol 10 (1) ◽  
pp. e34810111809
Author(s):  
Débora Rodrigues Silveira ◽  
Thamíris Pereira de Moraes ◽  
Kauana Kaefer ◽  
Luiz Gustavo Bach ◽  
Amanda de Oliveira Barbosa ◽  
...  

The presence of contaminated animals in wildlife rehabilitation centers poses a threat for both animals and humans that come into contact with them or the contaminated environment. The aim of this study was to assess the presence of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), as well as studying the biofilm formation capacity of these isolates, Yersinia enterocolitica, Salmonella enterica and Campylobacter spp. in wild animals from a rehabilitation center. During a two-year period, feces were collected from animals that were admitted to a wildlife rehabilitation center (n=324 samples). The pathogens were isolated from 51 (15.7%) animals of different species of mammals, birds and reptiles. Forty isolates (12.3%) were identified as S. aureus, of these, 32 (9.9%) were identified as MRSA and 72.5% were able to form biofilm. Y. enterocolitica was found in five mammals (5.1%), three reptiles (21.43%) and two birds (0.94%). Salmonella and Campylobacter were isolated from one bird each (0.67% and 0.67%, respectively). A wide diversity of animal species in rehabilitation centers, including birds, mammals and reptiles, can carry MRSA and enterobacteria of one health concern and eliminate in the feces. The presence of these pathogens in the gastrointestinal tract of wild animals admitted to a wildlife rehabilitation center shows the importance of microbiological monitoring of animals at the time of their admission and reinforces the need for specific hygienic-sanitary care.


2021 ◽  
Vol 9 (6) ◽  
pp. 1164
Author(s):  
Honggang Lai ◽  
Yuanyue Tang ◽  
Fangzhe Ren ◽  
Zeng Li ◽  
Fengming Li ◽  
...  

Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Consumption of chicken meat is considered the main route for human infection with Campylobacter. This study aimed to determine the critical factors for Campylobacter cross-contamination in Chinese commercial kitchens during chicken handling. Five commercial kitchens were visited to detect Campylobacter occurrence from 2019 to 2020. Chicken samples (n = 363) and cotton balls from the kitchen surfaces (n = 479) were collected, and total bacterial counts and Campylobacter spp. were detected. Genotypic characterization of 57 Campylobacter jejuni isolates was performed by multilocus sequence typing (MLST). In total, 77.41% of chicken carcass samples and 37.37% of kitchen surfaces showed Campylobacter spp. contamination. Before chicken preparation, Campylobacter spp. were already present in the kitchen environment; however, chicken handling significantly increased Campylobacter spp. prevalence (p < 0.05). After cleaning, boards, hands, and knives still showed high bacterial loads including Campylobacter spp., which related to poor sanitary conditions and ineffective handling practices. Poor sanitation conditions on kitchen surfaces offer greater opportunities for Campylobacter transmission. Molecular typing by MLST revealed that Campylobacter cross-contamination occurred during chicken preparation. The most prevalent sequence types, ST693 and ST45, showed strong biofilm formation ability. Consequently, sanitary condition of surfaces and biofilm formation ability of isolates were the critical points contributing to spread of Campylobacter in kitchen environment. These results provide insight into potential targeted control strategies along the farm-to-plate chain and highlight the necessity for improvements in sanitary conditions. The implementation of more effective cleaning measures should be considered to decrease the campylobacteriosis risk.


Author(s):  
B.D. Tall ◽  
K.S. George ◽  
R. T. Gray ◽  
H.N. Williams

Studies of bacterial behavior in many environments have shown that most organisms attach to surfaces, forming communities of microcolonies called biofilms. In contaminated medical devices, biofilms may serve both as reservoirs and as inocula for the initiation of infections. Recently, there has been much concern about the potential of dental units to transmit infections. Because the mechanisms of biofilm formation are ill-defined, we investigated the behavior and formation of a biofilm associated with tubing leading to the water syringe of a dental unit over a period of 1 month.


Author(s):  
O. Iungin ◽  
L. Maistrenko ◽  
P. Rebrykova ◽  
I. Duka

Sign in / Sign up

Export Citation Format

Share Document