The paleolake hydrology and climate change since the ~40 ka in the Hetao Basin, Inner Mongolia, China

2020 ◽  
Vol 553 ◽  
pp. 73-82
Author(s):  
Yang Xingchen ◽  
Cai Maotang ◽  
Hu Jianmin ◽  
Ye Peisheng ◽  
Ji Fengbao ◽  
...  
2011 ◽  
Vol 137 ◽  
pp. 286-290 ◽  
Author(s):  
Xi Chun ◽  
Mei Jie Zhang ◽  
Mei Ping Liu

The objective of this study is to analyse the climate changing patterns chronologically for exposing the coincident relationships between the lake area fluctuation and the climate change in Qehan lake of Abaga county of Inner Mongolia. The results show that there’s highly interrelation between the changes of the lake area and the climatic factors here, the annual average temperature and annual evaporation are negatively interrelate to the lake area fluctuation, and the annual precipitation interrelate to it is positive. The lake area has descended about 75 km2 during the nearly past 40 years. There were about two considerable lake expansions in 1973, 1998 through the generally lake area descending process.


2020 ◽  
Vol 12 (8) ◽  
pp. 1332 ◽  
Author(s):  
Linghui Guo ◽  
Liyuan Zuo ◽  
Jiangbo Gao ◽  
Yuan Jiang ◽  
Yongling Zhang ◽  
...  

An understanding of the response of interannual vegetation variations to climate change is critical for the future projection of ecosystem processes and developing effective coping strategies. In this study, the spatial pattern of interannual variability in the growing season normalized difference vegetation index (NDVI) for different biomes and its relationships with climate variables were investigated in Inner Mongolia during 1982–2015 by jointly using linear regression, geographical detector, and geographically weighted regression methodologies. The result showed that the greatest variability of the growing season NDVI occurred in typical steppe and desert steppe, with forest and desert most stable. The interannual variability of NDVI differed monthly among biomes, showing a time gradient of the largest variation from northeast to southwest. NDVI interannual variability was significantly related to that of the corresponding temperature and precipitation for each biome, characterized by an obvious spatial heterogeneity and time lag effect marked in the later period of the growing season. Additionally, the large slope of NDVI variation to temperature for desert implied that desert tended to amplify temperature variations, whereas other biomes displayed a capacity to buffer climate fluctuations. These findings highlight the relationships between vegetation variability and climate variability, which could be used to support the adaptive management of vegetation resources in the context of climate change.


2016 ◽  
Vol 37 (23) ◽  
pp. 5551-5564 ◽  
Author(s):  
Fang Han ◽  
Sarula Kang ◽  
Alexander Buyantuev ◽  
Qing Zhang ◽  
Jianming Niu ◽  
...  

2018 ◽  
Vol 88 ◽  
pp. 351-360 ◽  
Author(s):  
Dajing Li ◽  
Duanyang Xu ◽  
Ziyu Wang ◽  
Xiaogang You ◽  
Xiaoyu Zhang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Linghui Guo ◽  
Shaohong Wu ◽  
Dongsheng Zhao ◽  
Yunhe Yin ◽  
Guoyong Leng ◽  
...  

Based on the normalized difference vegetation index (NDVI), we analyzed vegetation change of the six major biomes across Inner Mongolia at the growing season and the monthly timescales and estimated their responses to climate change between 1982 and 2006. To reduce disturbance associated with land use change, those pixels affected by land use change from the 1980s to 2000s were excluded. At the growing season scale, the NDVI increased weakly in the natural ecosystems, but strongly in cropland. Interannual variations in the growing season NDVI for forest was positively linked with potential evapotranspiration and temperature, but negatively correlated with precipitation. In contrast, it was positively correlated with precipitation, but negatively related to potential evapotranspiration for other natural biomes, particularly for desert steppe. Although monthly NDVI trends were characterized as heterogeneous, corresponding to monthly variations in climate change among biome types, warming-related NDVI at the beginning of the growing season was the main contributor to the NDVI increase during the growing season for forest, meadow steppe, and typical steppe, but it constrained the NDVI increase for desert steppe, desert, and crop. Significant one-month lagged correlations between monthly NDVI and climate variables were found, but the correlation characteristics varied greatly depending on vegetation type.


2013 ◽  
Vol 35 (3) ◽  
pp. 315 ◽  
Author(s):  
S. J. Mu ◽  
Y. Z. Chen ◽  
J. L. Li ◽  
W. M. Ju ◽  
I. O. A. Odeh ◽  
...  

China’s grassland has been undergoing rapid changes in the recent past owing to increased climate variability and a shift in grassland management strategy driven by a series of ecological restoration projects. This study investigated the spatio-temporal dynamics of Inner Mongolia grassland, the main grassland region in China and part of the Eurasia Steppe, to detect the interactive nature of climate, ecosystems and society. Land-use and landscape patterns for the period from 1985 to 2009 were analysed based on TM- and MODIS-derived land-use data. Net Primary Productivity (NPP) estimated by using the Carnegie-Ames-Stanford Approach model was used to assess the growth status of grassland. Furthermore, the factors related to the dynamics of grassland were analysed from the perspectives of two driving factors, climate change and human activities. The results indicated that higher temperatures and lower precipitation may generally have contributed to grassland desertification, particularly in arid regions. During the period from 1985 to 2000, a higher human population and an increase in livestock numbers were the major driving forces responsible for the consistent decrease in NPP and a relatively fragmented landscape. From 2000 to 2009, the implementation of effective ecological restoration projects has arrested the grassland deterioration in some ecologically fragile regions. However, a rapid growth of livestock numbers has sparked new degradation onnon-degraded or lightly degraded grassland, which was initially neglected by these projects. In spite of some achievement in grassland restoration, China should take further steps to develop sustainable management practices for climate adaptation and economic development to bring lasting benefits.


2012 ◽  
Vol 32 (3) ◽  
pp. 767-776 ◽  
Author(s):  
顾润源 GU Runyuan ◽  
周伟灿 ZHOU Weican ◽  
白美兰 BAI Meilan ◽  
李喜仓 LI Xicang ◽  
邸瑞琦 DI Ruiqi ◽  
...  

2020 ◽  
Author(s):  
YaoJie Yue ◽  
Min Li

<p>Desertification, as one of the gravest ecological and environmental problems in the world, is affected both by climate change and human activities. As the consequences of global warming, the temperature in global arid and semi-arid areas is expected to increase by 1-3℃ by the end of this century. This change will significantly influence the spatial and temporal pattern of temperature, precipitation and wind speed in global arid and semi-arid areas, and in turn, ultimately impact the processing of desertification. Although current studies point out that future climate change tends to increase the risk of desertification. However, the future global or regional desertification risk under different climate change scenarios hasn’t been quantitively assessed. In this paper, we focused on this question by building a new model to evaluate this risk of desertification under an extreme climate change scenario, i.e. RCP8.5 (Representative Concentration Pathways, RCPs). We selected the northern agro-pastoral ecotone in China as the study area, where is highly sensitive to desertification. Firstly, the risk indicators of desertification were chosen in both natural and anthropic aspects, such as temperature, precipitation, wind speed, evaporation, and population. Secondly, the decision tree C5.0 algorithm of the machine learning technique was used to construct the quantitative evaluation model of land desertification risk based on the database of the 1:100,000 desertification map in China. Thirdly, with the support of the simulated meteorological data by General Circulation Models of HadGEM2-ES, the risk of desertification in the agro-pastoral ecotone in the north China under the RCP 8.5 scenario and SSP3 scenario (Shared Socioeconomic Pathways, SSPs) were predicted. The results show that the overall accuracy of the C5.0-based quantitative evaluation model for desertification risk is up to 83.32%, indicating that the C5.0 can better distinguish the risk of desertification according to the status of desertification impacting factors. Under the influence of future climate change, the agro-pastoral ecotone in northern China was estimated to be dominated by mild desertification risk, covering an area of more than 70%. Severe and moderate desertification risk is mainly distributed in the vicinity of Hulunbuir sandy land in the northeast of Inner Mongolia and the Horqin sandy land in the junction between Inner Mongolia, Jilin and Liaoning provinces. Compared with the datum period, the risk of desertification will decrease under the RCP8.5-SSP3 scenario. However, the desertification risk in Hulunbuir sandy land and that in the northwest of Jilin province will increase. The results of this study provide a scientific basis for developing more effective desertification control strategies to adapt to climate change in the agro-pastoral ecotone in north China. More importantly, it shows that the desertification risk can be predicted under the different climate change scenarios, which will help us to make a better understanding of the potential trend of desertification in the future, especially when the earth is getting warmer.</p>


2014 ◽  
Vol 35 (3) ◽  
pp. 337-347 ◽  
Author(s):  
Dongsheng Zhao ◽  
Shaohong Wu ◽  
Erfu Dai ◽  
Yunhe Yin

Sign in / Sign up

Export Citation Format

Share Document