Switching control approach for stable navigation of mobile robots in unknown environments

2011 ◽  
Vol 27 (3) ◽  
pp. 558-568 ◽  
Author(s):  
Juan Marcos Toibero ◽  
Flavio Roberti ◽  
Ricardo Carelli ◽  
Paolo Fiorini
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Chen ◽  
Shen Xu ◽  
Lulu Chu ◽  
Fei Tong ◽  
Lei Chen

In this paper, finite-time tracking problem of nonholonomic mobile robots for a moving target is considered. First of all, polar coordinates are used to characterize the distance and azimuth between the moving target and the robot. Then, based on the distance and azimuth transported from the sensor installed on the robot, a finite-time tracking control law is designed for the nonholonomic mobile robot by the switching control method. Rigorous proof shows that the tracking error converges to zero in a finite time. Numerical simulation demonstrates the effectiveness of the proposed control method.


2018 ◽  
Vol 15 (1) ◽  
pp. 172988141875457 ◽  
Author(s):  
Héctor M Becerra ◽  
J Armando Colunga ◽  
Jose Guadalupe Romero

This article is devoted to the design of robust position-tracking controllers for a perturbed wheeled mobile robot. We address the final objective of pose-regulation in a predefined time, which means that the robot position and orientation must reach desired final values simultaneously in a user-defined time. To do so, we propose the robust tracking of adequate trajectories for position coordinates, enforcing that the robot’s heading evolves tangent to the position trajectory and consequently the robot reaches a desired orientation. The robust tracking is achieved by a proportional–integral action or by a super-twisting sliding mode control. The main contribution of this article is a kinematic control approach for pose-regulation of wheeled mobile robots in which the orientation angle is not directly controlled in the closed-loop, which simplifies the structure of the control system with respect to existing approaches. An offline trajectory planning method based on parabolic and cubic curves is proposed and integrated with robust controllers to achieve good accuracy in the final values of position and orientation. The novelty in the trajectory planning is the generation of a set of candidate trajectories and the selection of one of them that favors the correction of the robot’s final orientation. Realistic simulations and experiments using a real robot show the good performance of the proposed scheme even in the presence of strong disturbances.


Robotica ◽  
2014 ◽  
Vol 33 (2) ◽  
pp. 332-347 ◽  
Author(s):  
Riccardo Falconi ◽  
Lorenzo Sabattini ◽  
Cristian Secchi ◽  
Cesare Fantuzzi ◽  
Claudio Melchiorri

SUMMARYIn this paper, a consensus-based control strategy is presented to gather formation for a group of differential-wheeled robots. The formation shape and the avoidance of collisions between robots are obtained by exploiting the properties of weighted graphs. Since mobile robots are supposed to move in unknown environments, the presented approach to multi-robot coordination has been extended in order to include obstacle avoidance. The effectiveness of the proposed control strategy has been demonstrated by means of analytical proofs. Moreover, results of simulations and experiments on real robots are provided for validation purposes.


Sign in / Sign up

Export Citation Format

Share Document