scholarly journals Sulfide-quinone oxidoreductase is required for cysteine synthesis and indispensable to mitochondrial health

Redox Biology ◽  
2021 ◽  
pp. 102169
Author(s):  
Xi Zhang ◽  
Yuping Xin ◽  
Zhigang Chen ◽  
Yongzhen Xia ◽  
Luying Xun ◽  
...  
2015 ◽  
Vol 10 (2) ◽  
pp. 137-142
Author(s):  
Ibrahim A. Alharbi ◽  
Majid Khan ◽  
Nayyar Rabbani ◽  
Abdulrahman M. Al-Senaidy ◽  
Mohammad A. Ismael ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 878
Author(s):  
Ling Zhao ◽  
Jiang Deng ◽  
Zi-Jian Xu ◽  
Wan-Po Zhang ◽  
Mahmoud Mohamed Khalil ◽  
...  

The objective of this study was to explore the mechanism of Hedyotis diffusa (HD) in mediating the detoxification of aflatoxin B1 (AFB1)-induced hepatic injury in chicks. A total of 144 one-day-old male broilers (Cobb 500) were randomly assigned to four treatment groups (n = 6 cages/diet, 6 chicks/cage). After three days of acclimation, the broilers were fed either a control diet (Control), Control plus 0.5 mg/kg of AFB1, or Control plus 0.5 mg/kg AFB1 with 500 or 1000 mg/kg HD for two weeks. Both serum and liver were collected at the end of the feeding trial for biochemistry, histology, and NF-E2-related nuclear factor 2 (NRF2)/antioxidant response element (ARE) signaling analysis. Compared with Control, the AFB1 treatment caused liver injury and decreased (p < 0.05) body weight gain, feed intake, feed conversion ratio, and serum albumin and total protein by 6.2–20.7%. AFB1 also induced swelling, necrosis, and severe vacuolar degeneration in chicks’ livers. Notably, HD supplementation at 500 and 1000 mg/kg mitigated (p < 0.05) the alterations induced by AFB1. HD supplementation alleviated (p < 0.05) AFB1-induced impairment in hepatic glutathione peroxidase activity, protein carbonyl, and exo-AFB1-8,9-epoxide (AFBO)–DNA concentrations by 57.7–100% and increased (p < 0.05) the activities of superoxide dismutase and catalase by 23.1–40.9% more than those of AFB1 treatment alone. Furthermore, HD supplementation at the two doses upregulated (p < 0.05) NRF2, NAD(P)H: quinone oxidoreductase-1, heme oxygenase-1, glutathione cysteine ligase catalytic subunit, and glutathione-S transferase A2 and A3 in livers relative to the AFB1 group by 0.99–3.4-fold. Overall, dietary supplementation of HD at a high dose displayed better protection effects against aflatoxicosis. In conclusion, a dietary HD supplementation at 500 and 1000 mg/kg protected broilers from AFB1-induced hepatotoxicity, potentially due to the activation of NRF2/ARE signaling in the chicks.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 776
Author(s):  
Elzbieta Janda ◽  
Concetta Martino ◽  
Concetta Riillo ◽  
Maddalena Parafati ◽  
Antonella Lascala ◽  
...  

Dietary flavonoids stimulate autophagy and prevent liver dysfunction, but the upstream signaling pathways triggered by these compounds are not well understood. Certain polyphenols bind directly to NRH-quinone oxidoreductase 2 (NQO2) and inhibit its activity. NQO2 is highly expressed in the liver, where it participates in quinone metabolism, but recent evidence indicates that it may also play a role in the regulation of oxidative stress and autophagy. Here, we addressed a potential role of NQO2 in autophagy induction by flavonoids. The pro-autophagic activity of seven flavonoid aglycons correlated perfectly with their ability to inhibit NQO2 activity, and flavones such as apigenin and luteolin showed the strongest activity in all assays. The silencing of NQO2 strongly reduced flavone-induced autophagic flux, although it increased basal LC3-II levels in HepG2 cells. Both flavones induced AMP kinase (AMPK) activation, while its reduction by AMPK beta (PRKAB1) silencing inhibited flavone-induced autophagy. Interestingly, the depletion of NQO2 levels by siRNA increased the basal AMPK phosphorylation but abrogated its further increase by apigenin. Thus, NQO2 contributes to the negative regulation of AMPK activity and autophagy, while its targeting by flavones releases pro-autophagic signals. These findings imply that NQO2 works as a flavone receptor mediating autophagy and may contribute to other hepatic effects of flavonoids.


2020 ◽  
Vol 11 (1) ◽  
pp. 215-226
Author(s):  
Yibing Zhang ◽  
Yong Zhao ◽  
Yongwang Ran ◽  
Jianyou Guo ◽  
Haifeng Cui ◽  
...  

AbstractBackgroundSevoflurane, a volatile anesthetic, is known to induce widespread neuronal degeneration and apoptosis. Recently, the stress-inducible protein sestrin 2 and adenosine monophosphate-activated protein kinase (AMPK) have been found to regulate the levels of intracellular reactive oxygen species (ROS) and suppress oxidative stress. Notoginsenoside R1 (NGR1), a saponin isolated from Panax notoginseng, has been shown to exert neuroprotective effects. The effects of NGR1 against neurotoxicity induced by sevoflurane were assessed.MethodsSprague-Dawley rat pups on postnatal day 7 (PD7) were exposed to sevoflurane (3%) anesthesia for 6 h. NGR1 at doses of 12.5, 25, or 50 mg/kg body weight was orally administered to pups from PD2 to PD7.ResultsPretreatment with NGR1 attenuated sevoflurane-induced generation of ROS and reduced apoptotic cell counts. Western blotting revealed decreased cleaved caspase 3 and Bad and Bax pro-apoptotic protein expression. NGR1 substantially upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression along with increased heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 levels, suggesting Nrf2 signaling activation. Enhanced sestrin-2 and phosphorylated AMPK expression were noticed following NGR1 pretreatment.ConclusionThis study revealed the neuroprotective effects of NGR1 through effective suppression of apoptosis and ROS via regulation of apoptotic proteins and activation of Nrf2/HO-1 and sestrin 2/AMPK signaling cascades.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A778-A778
Author(s):  
Minhyuk Yun ◽  
Goo-Young Kim ◽  
Sang Woo Jo ◽  
Changhoon In ◽  
Gyu-Young Moon ◽  
...  

BackgroundNAD(P)H-quinone oxidoreductase 1 (NQO1) is a cytosolic two-electron oxidoreductase overexpressed in many types of cancers, including breast cancer, pancreatic cancer, colorectal cancer, cholangiocarcinoma, uterine cervical cancer, melanoma, and lung cancer.1Up-regulation of NQO1 protects cells from oxidative stress and various cytotoxic quinones and is associated with late clinical stage, poor prognosis and lymph node metastasis.2 3 NQO1 increases stability of HIF-1α protein, which has been implicated in survival, proliferation, and malignance of cancer.1 Therefore, accumulating evidences suggest NQO1 as a promising therapeutic target for cancer. Accordingly, we have characterized the effect of a novel synthetic NQO1 substrate SBSC-S3001, and demonstrated its selective cytotoxic effects in cancer cells with high expression of NQO1.MethodsIn vitro cytotoxicity was determined by sulforhodamine B (SRB) assay in cancer cells with high NQO1 expression and CRISPR-mediated NQO1 knockout cells. The effect of SBSC-S3001 on the energy metabolism pathway was evaluated by western blot analysis of metabolism associated proteins from NQO1-overexpressed cancer cells treated with the compound for 24 hours. In vivo anti-tumor activity was evaluated in MC38 syngeneic and DLD-1 orthotopic mice models.ResultsSBSC-S3001 exhibited selective cytotoxicity in cancer cells with high expression of NQO1 in a dose-dependent manner. The cytotoxicity was observed in both normoxia and hypoxia conditions, correlating with the energy metabolism, mitochondrial biogenesis, and cancer proliferative pathways. Also, stronger cytotoxicity was observed in NQO1-overexpressed cancer cells treated with SBSC-S3001 compared to beta-lapachone and analogue treatment.4 When evaluated in vivo, SBSC-S3001 effectively inhibited the growth of syngeneic and orthotopic tumors when administered as a monotherapy. SBSC-S3001 treatment associated with reduction in key enzymes of the glycolytic pathway (LDHa and GAPDH) and HIF-1α and increase in levels of mitochondrial oxidative phosphorylation (OXPHOS) complex.ConclusionsTreatment of SBSC-S3001, a novel, NQO1-specific substrate reduces HIF-1α and key enzymes associated with glycolysis and suppresses the growth of tumors overexpressing NQO1. Further characterization of SBSC-S3001 as a novel metabolic anti-cancer agent for cancers with NQO1 overexpression is warranted.Ethics ApprovalThe study was approved by Samyang Biopharmaceuticals Institution’s Ethics Board, approval number SYAU2031.ReferencesOh ET, Kim JW, Kim JMet. al., NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun 2016; 14:13593.Ma, Y. et al. NQO1 overexpression is associated with poor prognosis in squamous cell carcinoma of the uterine cervix. BMC Cancer 2014;14: 414Yang, Y. et al. Clinical implications of high NQO1 expression in breast cancers. J. Exp. Clin. Cancer Res 2014;33:144.Yang Y, Zhou X, Xu M, et al., β-lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers. Sci Rep 2017;7:2681.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 421
Author(s):  
Maria Cristina Barbalace ◽  
Lorenzo Zallocco ◽  
Daniela Beghelli ◽  
Maurizio Ronci ◽  
Serena Scortichini ◽  
...  

Neurodegenerative diseases are driven by several mechanisms such as inflammation, abnormal protein aggregation, excitotoxicity, mitochondrial dysfunction and oxidative stress. So far, no therapeutic strategies are available for neurodegenerative diseases and in recent years the research is focusing on bioactive molecules present in food. In particular, extra-virgin olive oil (EVOO) phenols have been associated to neuroprotection. In this study, we investigated the potential antioxidant and neuroprotective activity of two different EVOO extracts obtained from Quercetano cultivar trees grown in two different areas (plain and hill) of the Tuscany region (Italy). The different geographical origin of the orchards influenced phenol composition. Plain extract presented a higher content of phenyl ethyl alcohols, cinnammic acids, oleacein, oleocanthal and flavones; meanwhile, hill extract was richer in lignans. Hill extract was more effective in protecting differentiated SH-SY5Y cells from peroxide stress thanks to a marked upregulation of the antioxidant enzymes heme oxygenase 1, NADPH quinone oxidoreductase 1, thioredoxin Reductase 1 and glutathione reductase. Proteomic analysis revealed that hill extract plays a role in the regulation of proteins involved in neuronal plasticity and activation of neurotrophic factors such as BDNF. In conclusion, these data demonstrate that EVOOs can have important neuroprotective activities, but these effects are strictly related to their specific phenol composition.


2013 ◽  
Vol 91 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Stephanie L. MacAllister ◽  
Cheryl Young ◽  
Anna Guzdek ◽  
Nickholas Zhidkov ◽  
Peter J. O'Brien

Chlorpromazine (CPZ), a member of the largest class of first-generation antipsychotic agents, is known to cause hepatotoxicity in the form of cholestasis and hepatocellular necrosis in some patients. The mechanism of CPZ hepatotoxicity is unclear, but is thought to result from reactive metabolite formation. The goal of this research was to assess potential cytotoxic mechanisms of CPZ using the accelerated cytotoxicity mechanism screening (ACMS) technique with freshly isolated rat hepatocytes. This study identified CPZ cytotoxicity and inhibition of mitochondrial membrane potential (MMP) to be concentration-dependent. Furthermore, inhibition of cytochrome P450s (CYPs), including CYP2D1 and 1A2, delayed CPZ cytotoxicity, suggesting a role for CYP activation of CPZ to a toxic metabolite(s) in this model. Metabolism studies also demonstrated glucuronide and glutathione (GSH) requirement for CPZ detoxification in hepatocytes. Inactivating the 2-electron reduction pathway, NAD(P)H quinone oxidoreductase (NQO1), caused a significant increase in hepatocyte susceptibility to CPZ, indicating quinoneimine contribution to CPZ cytotoxicity. Nontoxic concentrations of peroxidase/H2O2 (inflammatory model) increased cytotoxicity in CPZ-treated hepatocytes and caused additional mitochondrial toxicity. Inflammation further depleted GSH and increased oxidized glutathione (GSSG) levels. Results suggest activation of CPZ to reactive metabolites by 2 pathways in hepatocytes: (i) a CYP-catalyzed quinoneimine pathway, and (ii) a peroxidase-catalyzed oxidation of CPZ to CPZ radicals.


Sign in / Sign up

Export Citation Format

Share Document