Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya

2005 ◽  
Vol 94 (4) ◽  
pp. 463-474 ◽  
Author(s):  
A. Kääb
2021 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Francesco Ioli ◽  
Alberto Bianchi ◽  
Alberto Cina ◽  
Carlo De Michele ◽  
Paolo Maschio ◽  
...  

Recently, Unmanned Aerial Vehicles (UAV) have opened up unparalleled opportunities for alpine glacier monitoring, as they allow for reconstructing extensive and high-resolution 3D models. In order to evaluate annual ice flow velocities and volume variations, six yearly measurements were carried out between 2015 and 2020 on the debris-covered Belvedere Glacier (Anzasca Valley, Italian Alps) with low-cost fixed-wing UAVs and quadcopters. Every year, ground control points and check points were measured with GNSS. Images acquired from UAV were processed with Structure-from-Motion and Multi-View Stereo algorithms to build photogrammetric models, orthophotos and digital surface models, with decimetric accuracy. Annual glacier velocities were derived by combining manually-tracked features on orthophotos with GNSS measurements. Velocities ranging between 17 m y−1 and 22 my−1 were found in the central part of the glacier, whereas values between 2 m y−1 and 7 my−1 were found in the accumulation area and at the glacier terminus. Between 2 × 106 m3 and 3.5 × 106m3 of ice volume were lost every year. A pair of intra-year measurements (October 2017–July 2018) highlighted that winter and spring volume reduction was ∼1/4 of the average annual ice loss. The Belvedere monitoring activity proved that decimetric-accurate glacier models can be derived with low-cost UAVs and photogrammetry, limiting in-situ operations. Moreover, UAVs require minimal data acquisition costs and allow for great surveying flexibility, compared to traditional techniques. Information about annual flow velocities and ice volume variations of the Belvedere Glacier may have great value for further understanding glacier dynamics, compute mass balances, or it might be used as input for glacier flow modelling.


2021 ◽  
Author(s):  
◽  
Laura M. Kehrl

<p>The contribution of glacier mass loss to future sea level rise is still poorly constrained (Lemke and others, 2007). One of the remaining unknowns is how water inputs influence glacier velocity. Short-term variations in glacier velocity occur when a water input exceeds the capacity of the subglacial drainage system, and the subglacial water pressure increases. Several studies (Van de Wal and others, 2008; Sundal and others, 2011) have suggested that high ice-flow velocities during these events are later offset by lower ice-flow velocities due to a more efficient subglacial drainage system. This study combines in-situ velocity measurements with a full Stokes glacier flowline model to understand the spatial and temporal variations in glacier flow on the lower Franz Josef Glacier, New Zealand. The Franz Josef Glacier experiences significant water inputs throughout the year (Anderson and others, 2006), and as a result, the subglacial drainage system is likely well-developed. In March 2011, measured ice-flow velocities increased by up to 75% above background values in response to rain events and by up to 32% in response to diurnal melt cycles. These speed-up events occurred at all survey locations across the lower glacier. Through flowline modelling, it is shown that the enhanced glacier flow can be explained by a spatially-uniform subglacial water pressure that increased during periods of heavy rain and glacier melt. From these results, it is suggested that temporary spikes in water inputs can cause glacier speed-up events, even when the subglacial hydrology system is well-developed (cf. Schoof, 2010). Future studies should focus on determining the contribution of glacier speed-up events to overall glacier motion.</p>


2020 ◽  
Author(s):  
Christine Fey ◽  
Erik Kuschel ◽  
Anna Sara Amabile ◽  
Wolfgang Straka ◽  
Christian Zangerl

&lt;p&gt;Rock glaciers are geomorphological phenomena of mountain permafrost which slowly move downslope as a consequence of the ice deformation. During the last few decades, many rock glaciers in the Alps are showing an increase of flow velocities which is most probably caused by climate change. However, the factors influencing the flow velocities (e.g. air temperature, meltwater infiltration, internal rock glacier characteristics) are not fully understood. Data about the annual, inter-annual and diurnal rock glacier flow velocities are essential to understand the influence of climatic factors on rock glaciers.&lt;/p&gt;&lt;p&gt;This study focused on the Finstertal rock glacier, located in the Eastern Alps, where flow velocities are reconstructed since the 1970s based on aerial imagery, airborne and terrestrial laser scan data. Since 2014, a terrestrial laser scanning (TLS) based monitoring is implemented. The maximum flow velocities of the Finstertal rock glacier increased from 0.1 m/year (time period 1970-1997) to 1.4 m/year (time period 2015-2016) and is currently about 1.3 m/ year (time period 2018-2019).&lt;/p&gt;&lt;p&gt;The accuracy of aerial imagery and laser scan data is in the range of centimetres and well suited to analyse the annual variability of rock glaciers. Imagery and laser scan data are not suited for shorter time intervals, where the absolute displacement of a rock glacier is smaller than the measurement accuracy. Consequently, for the understanding of interannual and diurnal variations in rock glacier flow velocities, other measurement methods are needed. Ground-based interferometric synthetic aperture radar (GBInSAR) is able to detect spatial deformations in the range of sub-centimeters.&lt;/p&gt;&lt;p&gt;Therefore, to get a more detailed understanding of the rock glacier flow velocity variations, a GBInSAR was installed on Finstertal hydroelectric dam to measure the rock glacier flow velocities between October to November 2019. In this study, preliminary results on diurnal flow velocity variations of Finstertal rock glacier, based on GBInSAR, are presented, and compared to annual variations derived from aerial imagery and laser scan data.&lt;/p&gt;


2021 ◽  
Author(s):  
◽  
Laura M. Kehrl

<p>The contribution of glacier mass loss to future sea level rise is still poorly constrained (Lemke and others, 2007). One of the remaining unknowns is how water inputs influence glacier velocity. Short-term variations in glacier velocity occur when a water input exceeds the capacity of the subglacial drainage system, and the subglacial water pressure increases. Several studies (Van de Wal and others, 2008; Sundal and others, 2011) have suggested that high ice-flow velocities during these events are later offset by lower ice-flow velocities due to a more efficient subglacial drainage system. This study combines in-situ velocity measurements with a full Stokes glacier flowline model to understand the spatial and temporal variations in glacier flow on the lower Franz Josef Glacier, New Zealand. The Franz Josef Glacier experiences significant water inputs throughout the year (Anderson and others, 2006), and as a result, the subglacial drainage system is likely well-developed. In March 2011, measured ice-flow velocities increased by up to 75% above background values in response to rain events and by up to 32% in response to diurnal melt cycles. These speed-up events occurred at all survey locations across the lower glacier. Through flowline modelling, it is shown that the enhanced glacier flow can be explained by a spatially-uniform subglacial water pressure that increased during periods of heavy rain and glacier melt. From these results, it is suggested that temporary spikes in water inputs can cause glacier speed-up events, even when the subglacial hydrology system is well-developed (cf. Schoof, 2010). Future studies should focus on determining the contribution of glacier speed-up events to overall glacier motion.</p>


2008 ◽  
Vol 22 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Natalie Werner ◽  
Neval Kapan ◽  
Gustavo A. Reyes del Paso

The present study explored modulations in cerebral blood flow and systemic hemodynamics during the execution of a mental calculation task in 41 healthy subjects. Time course and lateralization of blood flow velocities in the medial cerebral arteries of both hemispheres were assessed using functional transcranial Doppler sonography. Indices of systemic hemodynamics were obtained using continuous blood pressure recordings. Doppler sonography revealed a biphasic left dominant rise in cerebral blood flow velocities during task execution. Systemic blood pressure increased, whereas heart period, heart period variability, and baroreflex sensitivity declined. Blood pressure and heart period proved predictive of the magnitude of the cerebral blood flow response, particularly of its initial component. Various physiological mechanisms may be assumed to be involved in cardiovascular adjustment to cognitive demands. While specific contributions of the sympathetic and parasympathetic systems may account for the observed pattern of systemic hemodynamics, flow metabolism coupling, fast neurogenic vasodilation, and cerebral autoregulation may be involved in mediating cerebral blood flow modulations. Furthermore, during conditions of high cardiovascular reactivity, systemic hemodynamic changes exert a marked influence on cerebral blood perfusion.


2020 ◽  
Vol 14 (3) ◽  
pp. 7109-7124
Author(s):  
Nasreddine Sakhri ◽  
Younes Menni ◽  
Houari Ameur ◽  
Ali J. Chamkha ◽  
Noureddine Kaid ◽  
...  

The wind catcher or wind tower is a natural ventilation technique that has been employed in the Middle East region and still until nowadays. The present paper aims to study the effect of the one-sided position of a wind catcher device against the ventilated space or building geometry and its natural ventilation performance. Four models based on the traditional design of a one-sided wind catcher are studied and compared. The study is achieved under the climatic conditions of the South-west of Algeria (arid region). The obtained results showed that the front and Takhtabush’s models were able to create the maximum pressure difference (ΔP) between the windward and leeward of the tower-house system. Internal airflow velocities increased with the increase of wind speed in all studied models. For example, at Vwind = 2 m/s, the internal flow velocities were 1.7, 1.8, 1.3, and 2.5 m/s for model 1, 2, 3, and 4, respectively. However, at Vwind = 6 m/s, the internal flow velocities were 5.6, 5.5, 2.5, and 7 m/s for model 1, 2, 3, and 4, respectively. The higher internal airflow velocities are given by Takhtabush, traditional, front and middle tower models, respectively, with a reduction rate between the tower outlet and occupied space by 72, 42, 36, and 33% for the middle tower, Takhtabush, traditional tower, and the front model tower, respectively. This reduction is due to the due to internal flow resistance. The third part of the study investigates the effect of window (exist opening) position on the opposite wall. The upper, middle and lower window positions are studied and compared. The air stagnation or recirculation zone inside the ventilated space reduced from 55% with the lower window to 46% for the middle window and reached 35% for the upper window position. The Front and Takhtabush models for the one-sided wind catcher with an upper window position are highly recommended for the wind-driven natural ventilation in residential houses that are located in arid regions.


Sign in / Sign up

Export Citation Format

Share Document