Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry

2012 ◽  
Vol 123 ◽  
pp. 187-195 ◽  
Author(s):  
Alka Singh ◽  
Florian Seitz ◽  
Christian Schwatke
2017 ◽  
Vol 21 (3) ◽  
pp. 1849-1862 ◽  
Author(s):  
Wade T. Crow ◽  
Eunjin Han ◽  
Dongryeol Ryu ◽  
Christopher R. Hain ◽  
Martha C. Anderson

Abstract. Due to their shallow vertical support, remotely sensed surface soil moisture retrievals are commonly regarded as being of limited value for water budget applications requiring the characterization of temporal variations in total terrestrial water storage (dS ∕ dt). However, advances in our ability to estimate evapotranspiration remotely now allow for the direct evaluation of approaches for quantifying dS ∕ dt via water budget closure considerations. By applying an annual water budget analysis within a series of medium-scale (2000–10 000 km2) basins within the United States, we demonstrate that, despite their clear theoretical limitations, surface soil moisture retrievals derived from passive microwave remote sensing contain statistically significant information concerning dS ∕ dt. This suggests the possibility of using (relatively) higher-resolution microwave remote sensing products to enhance the spatial resolution of dS ∕ dt estimates acquired from gravity remote sensing.


2019 ◽  
Vol 46 (23) ◽  
pp. 13984-13991 ◽  
Author(s):  
Jianli Chen ◽  
Byron Tapley ◽  
Ki‐Weon Seo ◽  
Clark Wilson ◽  
John Ries

2020 ◽  
Vol 12 (15) ◽  
pp. 2408
Author(s):  
Delong Tao ◽  
Hongling Shi ◽  
Chunchun Gao ◽  
Jingang Zhan ◽  
Xiaoping Ke

Inland water storage change is a fundamental part of the hydrologic cycle, which reflects the impact of climate change and anthropogenic activities on water resources. In this study, we used multisatellite data (from satellite altimetry, remote sensing, and the Gravity Recovery and Climate Experiment (GRACE)) to investigate water storage changes in the Aral Sea and its endorheic basin. The water storage depletion rate in the Aral Sea from calibrated hypsometric curves (CHCs) created by satellite altimetry and image data agrees with the GRACE-derived result using the Slepian space domain inverse method (SSDIM). Compared with the combined filtering method (CFM) and mascon solutions, the SSDIM was shown to be an effective method of reducing the GRACE leakage error and restoring the signal attenuation in the Aral Sea. Moreover, we used the WaterGAP global hydrology model (WGHM) to qualitatively analyze the variations in the water storage components. The results show that the groundwater in the Aral Sea affects the change in the interannual water storage, especially during the extreme dry and humid periods. However, from the long-term water storage trend, the decrease in the surface storage dominates the shrinking of the Aral Sea. In addition, more details of the water storage change pattern in the endorheic basin were revealed by the enhanced GRACE solution. Our findings accentuate the severe water storage states of the Aral Sea endorheic basin under the impact of climate change and human interventions.


Sign in / Sign up

Export Citation Format

Share Document