evapotranspiration rate
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 28)

H-INDEX

17
(FIVE YEARS 3)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 170
Author(s):  
Chusnul Arif ◽  
Satyanto Krido Saptomo ◽  
Budi Indra Setiawan ◽  
Muh Taufik ◽  
Willy Bayuardi Suwarno ◽  
...  

Evapotranspirative irrigation is a simple idea in a watering field based on the actual evapotranspiration rate, by operating an automatic floating valve in the inlet without electric power to manage water levels. The current study introduces a model of evapotranspirative irrigation and its application under different water levels. The objectives were (1) to evaluate the performances of evapotranspirative irrigation under various irrigation regimes, and to (2) to observe crop and water productivities of the system of rice intensification (SRI) as affected by different types of irrigation. The experiment was performed during one rice planting season, starting from July to November 2020, with three irrigation regimes, i.e., continuous flooded (CFI), moderate flooded (MFI) and water-saving irrigation (WSI). Good performance of the system was achieved; low root mean square error (RMSE) was indicated between observed water level and the set point in all irrigation regimes. Developing a better drainage system can improve the system. Among the regimes, the WSI regime was most effective in water use. It was able to increase water productivity by up to 14.5% while maintaining the crop yield. In addition, it has the highest water-use efficiency index. The index was 34% and 52% higher than those of the MFI and CFI regimes, respectively. Accordingly, the evapotranspirative irrigation was effective in controlling various water levels, and we recommend the system implemented at the field levels.


2021 ◽  
Vol 7 (2) ◽  
pp. 82-88
Author(s):  
Widya Irmawati ◽  
Siti Masreah Bernas ◽  
Bakri Bakri

Swampy land is an alternative for rice plant cultivation where the amount of rainfall has an impact on the amount of inundation. In order to provide appropriate water for rice plants, especially during the dry season, an irrigation water system is required for its control.Alternative materials such as dry rubber latex and vermicom-post can be utilized to reduce water use and ensure that water is delivered as efficiently as possible. The goal of this study was to see how dried rubber latex on the soil surface and vermicompost in the soil affected rice plant water demand and growth. This research was conducted from November 2020 – February 2021. The study used a factorial randomized block design (RAKF) with 2 treatments, covered dry rubber latex variations (K), K0 (0%), K1 (25%), K2 (50%), K3 (75%), and vermicompos (V), V0(0 g), V1(58.82 g), V2(117.64 g), V3 (176.46 g)with 3 rep-licat. So that the total treatmentsare 48 treatments.The results showed that the application of dry rubber latex and vermicompost significantly affected the number of leaves and the number of tillers. The K3 treatment (75%) was the best because it had the smallest evapotranspiration rate with an average of 1.2 mm day-1. The K3 treatment (75%) had the smallest average water requirement of 1.6 mm day-1 with an average number of 37.07 leaves. The high yield of K3 treatment was due to the wider the area covered by 75% (K3), the higher the water content, nutrients, and the lower the soil temperature. Closure using dry rubber latex can reduce sunlight so that the process of water loss is lower, and the available nutrients are higher.


2021 ◽  
Vol 20 (1) ◽  
pp. 1-8
Author(s):  
Naresh Bista ◽  
Dikpal Mahat ◽  
Sachin Manandhar ◽  
Binayak Regmi ◽  
Uma Shankar Panday ◽  
...  

A drought is a period of time when an area or region experiences below-normal precipitation, with characteristics and impacts that can vary from region to region. Agricultural Drought analyzes and reflects the extent of the soil moisture and morphology of crop. Deficient rainfall in the winter of 2008 resulted in a severe drop in crop production right across the country. So, there is a necessity of assessment of drought events to make informed and timely decisions. The main focus of our study is to monitor the agricultural drought in Karnali and Sudurpashchim provinces of Nepal. The condition of drought in Karnali and Sudurpashchim provinces from 2001- 2020 were analysed with the help of Drought Severity Index. MODIS NDVI (MOD13) and MODIS ET-PET (MOD16) datasets were used to monitor and analyze the trend and pattern of agricultural drought scenario. Both datasets were then normalized for DSI calculation and the DSI result was used to monitor and to analyze the trend and pattern in the agricultural drought scenario. Further, trend and pattern analyses were performed in terms of landcover, ecological zones, and the variation of DSI. After completion of this project, we can conclude that the Maximum dryness was found in March, it might be due to less NDVI and increase in evapotranspiration rate and maximum wetness in November. Agricultural area experienced more drought variation than other landcover zones


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ling Pi ◽  
Kaneyuki Nakane

The effect of a thin and light greening system with bamboo charcoal layer for water retention on heat fluxes, in particular latent heat flux (evapotranspiration rate), under no irrigation condition, on the rooftop of a building in Higashi-Hiroshima, West Japan, was investigated. In April 2019, lawn seeds (Zoysia tenuifolia) were sown which were germinated, reached a height of 70 mm by May when 100% of the vegetation area was covered. The air temperature and humidity at two different heights (0.3 m and 1.8 m) above greening soil surface, latent, and sensible heat fluxes were estimated. Bowen ratio was employed to collect the data on surface heat balance and soil water content during the summer season (June to September) in 2019 on the rooftop of a building in Higashi-Hiroshima, West Japan. The latent heat during daytime for a week without rainfall in each month was compared with the evapotranspiration rate. Owning to the vegetation development, the ground heat flux on greening soil surface decreased from -400 W/m2 to -200 W/m2 (flux from air to soil) during sunny daytime in July, and it was less than -100 W/m2 in August, although net radiation was maintained around 800 W/m2 over the season except in September. The monthly net radiation flux for an entire day (daytime and nighttime) ranged between 55 and 125 W/m2 (average: 95 W/m2) for the summer season of which 32-66% (average: 48%) was occupied by latent heat. Evapotranspiration from greening soil ranged between 1.24 and 1.82 mm/day, averaged at 1.51 mm/day throughout the season, which corresponded to about 26% of total rainfall over the season ( r 2 = 0.88 , p < 0.01 ; S . E = 0.06 ) between the estimated and measured values. These observations suggested that the thin and bamboo coal light soil layer greening system, even without constant irrigation, could maintain the development of lawn grass and transformed more than half of net radiation to latent heat, i.e., evapotranspiration, insulating most ground heat in midsummer, which may be mostly due to bamboo charcoal sublayer.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 622
Author(s):  
Oliver Weiss ◽  
Pia Minixhofer ◽  
Bernhard Scharf ◽  
Ulrike Pitha

Equations for calculating evapotranspiration in technical soils show great differences regarding their results. Causes are the different climatic conditions and vegetation specifics during their development. Every equation of evapotranspiration only delivers 100% correct results if it is used under the same climatic condition as it was developed in. To determine the evapotranspiration, the loss of weight of different technical soils and plants was measured in a test series on load cells in a climate chamber. The result of these test series is the development of an easy-to-use equation. An equation for calculating evapotranspiration at any temperature is possible while using a polynomial correlation. To determine the evapotranspiration rate (in mm/m² per 24 h), only temperature, vegetation type, and technical soil have to be defined to obtain an output of evapotranspiration in mm/day. Using the well-known equation by Makkink, evapotranspiration in technical soils is 0.12 mm/day, whereas the newly developed equation calculates (1) 2.59–5.58 mm/day for the variant with no vegetation, (2) 3.15–4.00 mm/day for Sedum floriferum, (3) 4.40–4.55 mm/day for Geranium x cantabrigiense. The application of this equation will help to determine the evapotranspiration in chosen technical soils (used in the sector of rainwater management) with or without vegetation.


2021 ◽  
Vol 24 (2) ◽  
pp. 55-60
Author(s):  
Mahdi Khani ◽  
Seyyed Hossein Payman ◽  
Nader Pirmoradian

Abstract The probability of a working day is the ratio of workable days to the total available days in a working season for the intended operation. Soil moisture is the most important limiting factor in terms of rice harvesting. Therefore, to determine the PWD for this operation, a model was developed to estimate the soil moisture based on soil-water balance. To calibrate and validate the model, the soil moisture was monitored in the paddy field of the University of Guilan during the rice harvest seasons in 2017 and 2018. The calibration process was performed by applying a decreasing ratio, i.e. the senescence factor (α), at a daily evapotranspiration rate compared to that of previous day. At the validation stage, the simulated soil moisture contents were compared with measured values, which indicated a good model accuracy (NRMSE = 6.53%) of the soil moisture estimation. Therefore, this model can be used for the rice harvesting operation feasibility evaluation and PWD calculation.


2021 ◽  
Vol 6 (1) ◽  
pp. 23-34
Author(s):  
Ari Sugiarto ◽  
Budi Indra Setiawan ◽  
Chusnul Arif ◽  
Satyanto Krido Saptomo

A review of air temperature in the Palembang city by reviewing data from the National Agency for Meteorology, Climatology, and Geophysics/BMKG (Kenten Climatology Station and the SMB II Meteorological Station) shows a difference in air temperature can indicate the occurrence of Urban Heat Island (UHI). The difference in air temperature affects the evapotranspiration rate (ET) because air temperature very influencing water evaporation. ET rate estimation with air temperature data is the first step to prove this hypothesis. Hargreaves and Samani, Blaney and Criddle, Linacre, and Kharuffa models is the ET model that using air temperature as the variable was used to estimate the ET rate. Air temperature data used in the period 2011-2020 by reviewing data from the Kenten Climatology Station and the SMB II Meteorological Station. The results of this study of air temperature data from the Kenten Climatology Station and the SMB II Meteorology Station showed a difference in air temperature with the minimum ∆T of 0.42 oC, the maximum of 0.43 oC, and the daily average of 0.41 oC. This difference in air temperature has an impact on the difference in the ET rate with the average ∆ET of the Hargreaves and Samani model of 0.05 mm/day, the Blaney and Criddle model of 0.05 mm/day, the Linacre model of 0.06 mm/day, and the Kharuffa model of 0.14 mm/day. The results of this study predicted that an increase in air temperature causes an increase in the ET rate of ± 10-30%.


2021 ◽  
Vol 6 (1) ◽  
pp. 35-48
Author(s):  
Adlan ◽  
Budi Indra Setiawan ◽  
Chusnul Arif ◽  
Satyanto Krido Saptomo

Estimation of evaporation rate is needed in hydrological data, especially in irrigation and drainage planning data. The method for estimating the evapotranspiration rate recommended by FAO is the Penman - Monteith method, however apart from this method there are still several methods that can be used if the data obtained in the field are different. Evaluation of the method of estimating the rate of evapotranspration is expected to help in choosing the right method when different data is obtained, so with this evaluation, we can see the accuracy of the methods. The methods that are closest to accuracy with the Penman - Monteith method are Hargreaves, Makkink, Turc, Blaney-Cridlle and Penman. If ordered based on the ranking of the evaluation results, the method that is closest to the Penman - Monteith method is Hargreaves, because of all the evaluation variabels Hargreaves has the best evaluation value. While the closest model based on the best R2 value is the Jensen-Haise model, but the error value of this model is very high.


2021 ◽  
Author(s):  
Pedro Arboleda ◽  
Agnès Ducharne ◽  
Frédérique Cheruy

&lt;p&gt;Groundwater (GW) constitutes by far the largest volume of liquid freshwater on Earth. The most active part is soil moisture (SM), which plays a key role on land/atmosphere interactions. But GW is often stored in deep reservoirs below the soil as well, where it presents slow horizontal movements along hillslopes toward the river network. They end up forming baseflow with well-known buffering effects on streamflow variability, but they also contribute to sustain higher SM values, especially in the lowland areas surrounding streams, which are among the most frequent wetlands. &amp;#160;As a result, GW-SM interactions may influence the climate system, in the past but also in the future, with a potential to alleviate anthropogenic warming, at least regionally, owing to enhanced evapotranspiration rate (ET) or higher soil thermal inertia for instance.&lt;br&gt;To assess where, when, and how much GW-SM interaction affects the climate change trajectories, we use coupled land-atmosphere simulations with the IPSL-CM6 climate model, developed by the Institut Pierre Simon Laplace for CMIP6. &amp;#160;We contrast the results of two long-term simulations (1979-2100), which share the same sea surface temperature and radiative forcing, using the SSP5-8.5 scenario (i.e. the most pessimistic) for 2015-2100. The two simulations differ by their configuration of the land surface scheme ORCHIDEE: in the default version, there is no GW-SM interaction, while this interaction is permitted in the second simulation, within a so-called lowland fraction, fed by surface and GW runoff from the rest of the grid-cell. For simplicity, this lowland fraction is set constant over time, but varies across grid-cells based on a recently designed global scale wetland map.&amp;#160;&lt;br&gt;Within this framework, we analyse the impact of the GW-SM interaction on climate change trajectories, focusing on the response of evapotranspiration rates and near-surface air temperatures. The GW-SM interaction can modulate the response to climate change by amplifying, attenuating, or even inverting the climate change trend. Based on yearly mean values over land, we find that the GW-SM interaction amplifies the response of evapotranspiration to climate change, as the mean evapotranspiration rate increases 50% faster over 1980 - 2100 in the simulation with GW-SM interaction. In contrast, the mean warming over land is 1% weaker, shifting from 6.4 to 6.3 &amp;#176;C/100 years; thus attenuated, if the GW-SM interaction is accounted for. In both cases, these values hide important differences across climates and seasons, with mitigation or amplification for both variables, indicating the need for regional and seasonal assessment. We will also further explore how GW-SM interaction impacts the future evolution of heatwaves, in terms of duration and frequency.&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Adil Salman ◽  
Wolfgang Durner ◽  
Deep C. Joshi ◽  
Mahyar Naseri

&lt;p&gt;Drought and climatic change are among the main environmental stressors for the water and soil qualities. Soil water potential is the major soil-related factor controlling water availability to plants and their evapotranspiration. It consists of two main components: matric and osmotic potential. Although the effect of matric potential on plant evapotranspiration has been extensively studied under various conditions, there is still a lack of quantitative studies on the effects of osmotic potential on evapotranspiration.&lt;/p&gt;&lt;p&gt;In our study, we investigated the influence of soil osmotic potential on the evapotranspiration rate and cumulative evapotranspiration of grass planted in small laboratory lysimeters. A sandy loam soil material was packed in four lysimeters with a volume of 6000 cm&lt;sup&gt;3&lt;/sup&gt; and equal bulk density. The soil material was air dried, freed from roots and passed through a 2&amp;#160;mm sieve. Each lysimeter was equipped with soil sensors at two different depths to monitor soil moisture, bulk electrical conductivity, temperature, and matric potential. To obtain continuous mass balance measurements, each lysimeter was placed on a balance connected to the computer. Grass seeds were planted in each lysimeter at the same density and irrigated with distilled water until plant height was 12 cm. Irrigation water of two different qualities (EC= 0 and 4.79 dS/m) was then applied to produce different levels (0 and -0.17 MPa) of osmotic potential. The volumetric water content was adjusted to a value between 15 and 20&amp;#160;% in each lysimeter during the grass growth period. When the volumetric water content reached 15&amp;#160;%, irrigation water was added to the lysimeters to increase it to 20&amp;#160;%. Data were collected to calculate changes in osmotic potential relative to changes in total soil water potential. In addition, the relationship between osmotic potential and evapotranspiration rate during the growing season was determined.&lt;/p&gt;&lt;p&gt;Our results indicate a controlling role of soil osmotic potential on total soil water potential. This role results a significant reductions in evapotranspiration in response to increases in osmotic potential, in addition to effects on plant health. Osmotic potential has a significant function on total soil water potential when the soil becomes dry and poor water qualities are used in irrigation.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document