Possibilities of application of waste wood biomass as an energy source in Vojvodina

2012 ◽  
Vol 16 (5) ◽  
pp. 2355-2360 ◽  
Author(s):  
Siniša N. Dodić ◽  
Tamara Zelenović Vasiljević ◽  
Radenko M. Marić ◽  
Aleksandar J. Radukin Kosanović ◽  
Jelena M. Dodić ◽  
...  
Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 279 ◽  
Author(s):  
Marija Stjepanović ◽  
Natalija Velić ◽  
Antonela Galić ◽  
Indira Kosović ◽  
Tamara Jakovljević ◽  
...  

The aim of the study was to screen the waste wood biomass of 10 wood species as biosorbents for synthetic dye Congo Red (CR) removal from water and to single out the most efficient species for further batch biosorption experiments. Euroamerican poplar (EP), the most efficient species achieving 71.8% CR removal and biosorption capacity of 3.3 mg g−1, was characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR). Different factors affecting the biosorption process were investigated: initial biosorbent concentration (1–10 g dm−3), contact time (5–360 min), initial CR concentration (10–100 mg dm−3), and the initial pH (pH = 4–9). The results showed that CR removal efficiency increased with the increase of biosorbent concentration and contact time. Increase of initial CR concentration led to an increase of the biosorption capacity, but also a decrease of CR removal efficiency. The highest CR removal efficiency was achieved at pH = 4, while at pH = 9 a significant decrease was noticed. The percentage of CR removal from synthetic wastewater was 18.6% higher than from model CR solution. The Langmuir model fitted well the biosorption data, with the maximum biosorption capacity of 8 mg g−1. The kinetics data were found to conform to the pseudo-second-order kinetics model.


2014 ◽  
Vol 1001 ◽  
pp. 126-130
Author(s):  
Tomáš Bakalár ◽  
Henrieta Pavolová ◽  
Milan Búgel ◽  
Ľubica Kozáková

Biomass is organic material, the second most important source of energy. Biomass is a renewable energy source. Wood biomass is used as source of energy for heating in many regions in Slovakia. It is because of its availability. Wood biomass is an easily accessible and affordable source of energy. At present, thermochemical processes, biochemical processes and physical-chemical processes are used for biomass utilization. In the article a suitable technology for combustion of wood chips is proposed. It consists of five main technological parts: transport of wood chips, silo, combustion boiler, and stack.


2008 ◽  
Vol 159 (9) ◽  
pp. 288-295 ◽  
Author(s):  
Peter Hofer ◽  
Ruedi Taverna ◽  
Frank Werner

The greenhouse gas effect can be mitigated by using wood in wood products and as an energy source. The effects of different wood use scenarios over more than 100 years can be demonstrated simulating associated wood flows and changes in wood stocks. The following recommendations have been developed on the basis of such models in order to optimize the contribution of the forestry and timber sector to mitigate climate change: 1) the maximum possible sustainable increment should be generated in the forest; 2) this increment should be harvested continuously; 3) the harvested wood should be processed in accordance with the principle of cascade use; 4) waste wood that is not suitable for further use should be used to generate energy.


Energy ◽  
2021 ◽  
pp. 120358
Author(s):  
Jingjing Li ◽  
Binlin Dou ◽  
Hua Zhang ◽  
Hao Zhang ◽  
Haisheng Chen ◽  
...  

2020 ◽  
Author(s):  
◽  
Mitchell Hawse

A mixture of waste-wood biomass and municipal biosolids waste was composted in a plastic container inside of an insulated chamber. The mixture of biomass and biosolids was approximately 50:50 and weighed 82.6 kg. The peak temperature of the compost was 32.4◦C. The small scale of the compost system allowed the lower limit of the compost decomposition rate to be studied. A model was successfully developed to predict the core temperature of the compost using the ambient temperature in the insulated chamber. A literature review was conducted to determine literature values for the overall convective and conductive heat transfer coefficient, the dry mass fraction, and heat of combustion for both biomass and biosolids. The model used an optimization algorithm to calculate the rate constant for the experimental setup. The calculated decomposition rate constant was 0.0525 Day−1.


Sign in / Sign up

Export Citation Format

Share Document