A novel gas sensing scheme using near-infrared multi-input multi-output off-axis integrated cavity output spectroscopy (MIMO-OA-ICOS)

Author(s):  
Kaiyuan Zheng ◽  
Chuantao Zheng ◽  
Haipeng Zhang ◽  
Gangyun Guan ◽  
Yu Zhang ◽  
...  
2020 ◽  
pp. 1-1
Author(s):  
Kaiyuan Zheng ◽  
Chuantao Zheng ◽  
Haipeng Zhang ◽  
Junhao Li ◽  
Zidi Liu ◽  
...  

The Analyst ◽  
2016 ◽  
Vol 141 (18) ◽  
pp. 5298-5303 ◽  
Author(s):  
Rafael L. Ribessi ◽  
Thiago de A. Neves ◽  
Jarbas J. R. Rohwedder ◽  
Celio Pasquini ◽  
Ivo M. Raimundo ◽  
...  

Integration of a heart-shaped substrate-integrated hollow waveguide with a micro-spectrometer results in an ultra-compact gas sensing system: iHEART.


2021 ◽  
Author(s):  
Merve ZEYREK ONGUN ◽  
Sibel OGUZLAR ◽  
Alper S. Akalin ◽  
Serdar Yildirim

Abstract Barium stannate (BaSnO3) particles were synthesized using a one-step flame spray pyrolysis (FSP) method. The fabricated ceramic powders were investigated in terms of the structural, morphological, and optical properties by using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-Ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), zeta particle size analyzer, UV-visible spectroscopy (UV-vis) and photoluminescence spectroscopy (PL). The XRD results showed the structure of BaSnO3 crystals have been obtained when the powders were exposed at high temperature, specifically at 1200 °C. The synthesized particles in the submicron size in a range of 70-980 nm were produced. The optical band gap value of the synthesized crystals was calculated by means of reflectance spectra with the Kubelka-Munk method and found as 3.14 eV. When the powders excited at 375 nm, they exhibited emission bands in the visible and near-infrared region (NIR) of the electromagnetic spectrum. As far as we know, this is the first time BaSnO3 crystals have been synthesized using the FSP technique. In this study, the intensity- and decay time- based gas sensing properties of BaSnO3 embedded in ethyl cellulose thin films when exposed to the vapors of ethanol, acetone, and ammonia were also measured.


2021 ◽  
Author(s):  
Minh N. Ngo ◽  
Tong N. Ba ◽  
Denis Petitprez ◽  
Fabrice Cazier ◽  
Weixiong Zhao ◽  
...  

<p>The hydroxyl (OH) free radical plays an important role in atmospheric chemistry due to its high reactivity with volatile organic compounds (VOCs) and trace species (CH<sub>4, </sub>CO, SO<sub>2</sub>, etc) [1]. Due to its very short lifetime (~1 s or less) and very low concentration in the atmosphere (in the order of 10<sup>6</sup> cm<sup>-</sup><sup>3</sup>), in situ and direct measurement of OH concentration in the atmosphere is challenging [2].</p><p>We report in this paper our recent work on developing a compact spectroscopic instrument based on off-axis integrated cavity output spectroscopy (OA-ICOS) [3] for optical monitoring of OH radicals. In the present work, OH radicals of ~10<sup>12</sup> OH radicals/cm<sup>3</sup> were generated from continue micro-wave discharge at 2.45 GHz of water vapor at low pressure (0.2-1 mbar), and were used as sample for validation of the developed OA-ICOS approaches. Two experimental approaches are designed for the measurements of OH radicals: (1) OA-ICOS [4] and wavelength modulation enhanced OA-ICOS (WM OA-ICOS) [5]. A distributed feedback (DFB) laser operating at 2.8 µm was employed for probing the Q (1.5e) and Q (1.5f) double-line transitions of the <sup>2</sup>Π<sub>3/2</sub><sub></sub>state at 3568.52382 and 3568.41693 cm<sup>-</sup><sup>1</sup>, respectively. A 1s detection limit of ~2.7×10<sup>10</sup> cm<sup>-3</sup>  was obtained for an averaging time of 125 s using a simple OA-ICOS scheme. This limit of detection is further improved by a factor of 3.4 using a WM OA-ICOS approach.</p><p>The experimental detail and the preliminary results will be presented and discussed.</p><p><strong> </strong><strong>Acknowledgments. </strong>The authors thank the financial supports from the CPER CLIMIBIO program and the Labex CaPPA project (ANR-10-LABX005).</p><p><strong>References</strong></p><p>[1]  U. Platt, M. Rateike, W. Junkermann, J. Rudolph, and D. H. Ehhalt, New tropospheric OH measurements, J. Geophys. Res. <strong>93</strong> (1988) 5159-5166.</p><p>[2]  D. E. Heard and M. J. Pilling, Measurement of OH and HO<sub>2</sub> in the Troposphere, Chem. Rev. <strong>103</strong> (2003) 5163-5198.</p><p>[3]  J. B. Paul, L. Lapson, J. G. Anderson, Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment, Appl. Opt. 40 (2001) 4904-4910.</p><p>[4]  W. Chen, A. A. Kosterev, F. K. Tittel, X. Gao, W. Zhao, "H<sub>2</sub>S trace concentration measurements using Off-Axis Integrated Cavity Output Spectroscopy in the near-infrared", Appl. Phys. B 90 (2008) 311-315</p><p>[5] W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, H. Cha, Wavelength modulation off-axis integrated cavity output spectroscopy in the near infrared, Appl. Phys. B 86 (2007) 353-359</p>


2011 ◽  
Vol 19 (8) ◽  
pp. 7664 ◽  
Author(s):  
P.J. Rodríguez-Cantó ◽  
M. Martínez-Marco ◽  
F. J. Rodríguez-Fortuño ◽  
B. Tomás-Navarro ◽  
R. Ortuño ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document