Temperature-sensitive emission of dialkylaminostyrylhetarene dyes and their incorporation into phospholipid aggregates: applicability for thermal sensing and cellular uptake behavior

Author(s):  
B.S. Akhmadeev ◽  
T.P. Gerasimova ◽  
A.R. Gilfanova ◽  
S.A. Katsyuba ◽  
L.N. Islamova ◽  
...  
2021 ◽  
Vol 17 (3) ◽  
pp. 1-23
Author(s):  
Jun Zhou ◽  
Mengquan Li ◽  
Pengxing Guo ◽  
Weichen Liu

As an emerging role in new-generation on-chip communication, optical networks-on-chip (ONoCs) provide ultra-high bandwidth, low latency, and low power dissipation for data transfers. However, the thermo-optic effects of the photonic devices have a great impact on the operating performance and reliability of ONoCs, where the thermal-aware control with accurate measurements, e.g., thermal sensing, is typically applied to alleviate it. Besides, the temperature-sensitive ONoCs are prone to be attacked by the hardware Trojans (HTs) covertly embedded in the counterfeit integrated circuits (ICs) from the malicious third-party vendors, leading to performance degradation, denial-of-service (DoS), or even permanent damages. In this article, we focus on the tampering and snooping attacks during the thermal sensing via micro-ring resonator (MR) in ONoCs. Based on the provided workflow and attack model, a new structure of the anti-HT module is proposed to verify and protect the obtained data from the thermal sensor for attacks in its optical sampling and electronic transmission processes. In addition, we present the detection scheme based on the spiking neural networks (SNNs) to implement an accurate classification of the network security statuses for further high-level control. Evaluation results indicate that, with less than 1% extra area of a tile, our approach can significantly enhance the hardware security of thermal sensing for ONoC with trivial costs of up to 8.73%, 5.32%, and 6.14% in average latency, execution time, and energy consumption, respectively.


Author(s):  
A. E. Vatter ◽  
J. Zambernard

Oncogenic viruses, like viruses in general, can be divided into two classes, those that contain deoxyribonucleic acid (DNA) and those that contain ribonucleic acid (RNA). The RNA viruses have been recovered readily from the tumors which they cause whereas, the DNA-virus induced tumors have not yielded the virus. Since DNA viruses cannot be recovered, the bulk of present day investigations have been concerned with RNA viruses.The Lucké renal adenocarcinoma is a spontaneous tumor which occurs in northern leopard frogs (Rana pipiens) and has received increased attention in recent years because of its probable viral etiology. This hypothesis was first advanced by Lucké after he observed intranuclear inclusions in some of the tumor cells. Tumors with inclusions were examined at the fine structural level by Fawcett who showed that they contained immature and mature virus˗like particles.The use of this system in the study of oncogenic tumors offers several unique features, the virus has been shown to contain DNA and it can be recovered from the tumor, also, it is temperature sensitive. This latter feature is of importance because the virus can be transformed from a latent to a vegetative state by lowering or elevating the environmental temperature.


2020 ◽  
Vol 56 (65) ◽  
pp. 9332-9335
Author(s):  
Sandra Estalayo-Adrián ◽  
Salvador Blasco ◽  
Sandra A. Bright ◽  
Gavin J. McManus ◽  
Guillermo Orellana ◽  
...  

Two new water-soluble amphiphilic Ru(ii) polypyridyl complexes were synthesised and their photophysical and photobiological properties evaluated; both complexes showed a rapid cellular uptake and phototoxicity against HeLa cervical cancer cells.


1989 ◽  
Vol 50 (C1) ◽  
pp. C1-559-C1-564
Author(s):  
F. P. KEENAN ◽  
R. BARNSLEY ◽  
J. DUNN ◽  
K. D. EVANS ◽  
S. M. McCANN ◽  
...  

1989 ◽  
Vol 28 (05) ◽  
pp. 193-200 ◽  
Author(s):  
E. Aulbert

Cellular uptake of 67Ga-labelled transferrin by the tumor tissue was studied in rats with tumors of different malignancy and different tumor mass using the slowly growing Morris hepatoma 5123C, the moderately growing Novikoff hepatoma and the very fast and aggressive Yoshida hepatoma AH130. The cellular accumulation of 67Ga-transferrin was found to correlate with the proliferation activity of the tumor. The 67Ga-transferrin concentration in the very fast growing Yoshida hepatoma was 4.8 times higher than the concentration in the slowly growing Morris hepatoma. The uptake of 67Ga-transferrin by the tumors resulted in a faster disappearance of circulating 67Ga-transferrin from the blood. The rate of disappearance correlated with the proliferation activity and the spread of the tumors. Using tumors of identical size the elimination of 67Ga-transferrin from the blood was much faster in the rats with Yoshida hepatoma than in those with the slowly growing Morris hepatoma. On the other hand, using tumors of different tumor size it could be demonstrated that the rate of disappearance of 67Ga-transferrin from the blood correlated directly with tumor mass. It is concluded that cellular incorporation of transferrin within the tumor cells results in a loss of circulating transferrin, which correlates with tumor mass and proliferation of tumor. This mechanism is supposed to be the cause for the hypotransferrinemia seen in patients with malignant tumors.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


Sign in / Sign up

Export Citation Format

Share Document