scholarly journals No connectivity alterations for striatum, default mode, or salience network in association with self-reported antipsychotic medication dose in a large chronic patient group

2020 ◽  
Vol 223 ◽  
pp. 359-360
Author(s):  
Emma N. Herms ◽  
Jeffrey R. Bishop ◽  
Victoria T. Okuneye ◽  
Carol A. Tamminga ◽  
Matcheri S. Keshavan ◽  
...  
2020 ◽  
Author(s):  
Steve Mehrkanoon

AbstractSynchronous oscillations of neuronal populations support resting-state cortical activity. Recent studies indicate that resting-state functional connectivity is not static, but exhibits complex dynamics. The mechanisms underlying the complex dynamics of cortical activity have not been well characterised. Here, we directly apply singular value decomposition (SVD) in source-reconstructed electroencephalography (EEG) in order to characterise the dynamics of spatiotemporal patterns of resting-state functional connectivity. We found that changes in resting-state functional connectivity were associated with distinct complex topological features, “Rich-Club organisation”, of the default mode network, salience network, and motor network. Rich-club topology of the salience network revealed greater functional connectivity between ventrolateral prefrontal cortex and anterior insula, whereas Rich-club topologies of the default mode networks revealed bilateral functional connectivity between fronto-parietal and posterior cortices. Spectral analysis of the dynamics underlying Rich-club organisations of these source-space network patterns revealed that resting-state cortical activity exhibit distinct dynamical regimes whose intrinsic expressions contain fast oscillations in the alpha-beta band and with the envelope-signal in the timescale of < 0.1 Hz. Our findings thus demonstrated that multivariate eigen-decomposition of source-reconstructed EEG is a reliable computational technique to explore how dynamics of spatiotemporal features of the resting-state cortical activity occur that oscillate at distinct frequencies.


2004 ◽  
Vol 184 (6) ◽  
pp. 503-508 ◽  
Author(s):  
Anna Maria Meaney ◽  
Shubulade Smith ◽  
O. D. Howes ◽  
Moira O'Brien ◽  
Robin M. Murray ◽  
...  

BackgroundHigh rates of osteoporosis in schizophrenia may result from the prolactin-raising effects of some antipsychotic medication.AimsTo examine bone mineral density in relation to relevant endocrine variables in patients with schizophrenia taking prolactin-raising antipsychotics.MethodFifty-five patients who had been receiving prolactin-raising antipsychotic medication for > 10 years underwent dual-energy X-ray absorptiometry of their lumbar and hip bones. Among the endocrine variables assessed were plasma prolactin and sex hormones.ResultsAge-related reduced bone mineral density measures were found in 17 (57%) of the male and 8 (32%) of the female patients. Higher doses of medication were associated with increased rates of both hyperprolactinaemia and bone mineral density loss. Bone loss for the whole group was correlated with medication dose, and for men was inversely correlated with testosterone values.ConclusionsThese results suggestthat patients with schizophrenia on long-term prolactin-raising antipsychotic medication are at high risk of developing reduced bone mineral density as a consequence of hyperprolactinaemia-induced hypogonadism.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ying Liang ◽  
Zhenzhen Li ◽  
Jing Wei ◽  
Chunlin Li ◽  
Xu Zhang ◽  
...  

We applied resting-state functional magnetic resonance imaging (fMRI) to examine the Apolipoprotein E (ApoE) ε4 allele effects on functional connectivity of the default mode network (DMN) and the salience network (SN). Considering the frequency specific effects of functional connectivity, we decomposed the brain network time courses into two bands: 0.01–0.027 Hz and 0.027–0.08 Hz. All scans were acquired by the Alzheimer’s Disease Neuroscience Initiative (ADNI). Thirty-two nondemented subjects were divided into two groups based on the presence (n=16) or absence (n=16) of the ApoE ε4 allele. We explored the frequency specific effects of ApoE ε4 allele on the default mode network (DMN) and the salience network (SN) functional connectivity. Compared to ε4 noncarriers, the DMN functional connectivity of ε4 carriers was significantly decreased while the SN functional connectivity of ε4 carriers was significantly increased. Many functional connectivities showed significant differences at the lower frequency band of 0.01–0.027 Hz or the higher frequency band of 0.027–0.08 Hz instead of the typical range of 0.01–0.08 Hz. The results indicated a frequency dependent effect of resting-state signals when investigating RSNs functional connectivity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Katherine G. Warthen ◽  
Robert C. Welsh ◽  
Benjamin Sanford ◽  
Vincent Koppelmans ◽  
Margit Burmeister ◽  
...  

Neuropeptide Y (NPY) is a neurotransmitter that has been implicated in the development of anxiety and mood disorders. Low levels of NPY have been associated with risk for these disorders, and high levels with resilience. Anxiety and depression are associated with altered intrinsic functional connectivity of brain networks, but the effect of NPY on functional connectivity is not known. Here, we test the hypothesis that individual differences in NPY expression affect resting functional connectivity of the default mode and salience networks. We evaluated static connectivity using graph theoretical techniques and dynamic connectivity with Leading Eigenvector Dynamics Analysis (LEiDA). To increase our power of detecting NPY effects, we genotyped 221 individuals and identified 29 healthy subjects at the extremes of genetically predicted NPY expression (12 high, 17 low). Static connectivity analysis revealed that lower levels of NPY were associated with shorter path lengths, higher global efficiency, higher clustering, higher small-worldness, and average higher node strength within the salience network, whereas subjects with high NPY expression displayed higher modularity and node eccentricity within the salience network. Dynamic connectivity analysis showed that the salience network of low-NPY subjects spent more time in a highly coordinated state relative to high-NPY subjects, and the salience network of high-NPY subjects switched between states more frequently. No group differences were found for static or dynamic connectivity of the default mode network. These findings suggest that genetically driven individual differences in NPY expression influence risk of mood and anxiety disorders by altering the intrinsic functional connectivity of the salience network.


2021 ◽  
Author(s):  
Ganesh B. Chand ◽  
Deepa S. Thakuri ◽  
Bhavin Soni

AbstractNeuroimaging studies suggest that the human brain consists of intrinsically organized large-scale neural networks. Among those networks, the interplay among default-mode network (DMN), salience network (SN), and central-executive network (CEN)has been widely employed to understand the functional interaction patterns in health and diseases. This triple network model suggests that SN causally controls DMN and CEN in healthy individuals. This interaction is often referred to as the dynamic controlling mechanism of SN. However, such interactions are not well understood in individuals with schizophrenia. In this study, we leveraged resting state functional magnetic resonance imaging (fMRI) data of schizophrenia (n = 67) and healthy controls (n = 81) to evaluate the functional interactions among DMN, SN, and CEN using dynamical causal modeling. In healthy controls, our analyses replicated previous findings that SN regulates DMN and CEN activities (Mann-Whitney U test; p < 10−8). In schizophrenia, however, our analyses revealed the disrupted SN-based controlling mechanism on DMN and CEN (Mann-Whitney U test; p < 10−16). These results indicate that the disrupted controlling mechanism of SN on two other neural networks may be a candidate neuroimaging phenotype in schizophrenia.


2021 ◽  
Author(s):  
Valeria Onofrj ◽  
Antonio Maria Chiarelli ◽  
Richard Wise ◽  
Cesare Colosimo ◽  
Massimo Caulo

Abstract The Salience Network (SN), Ventral Attention Network (VAN), Dorsal Attention Network (DAN) and Default Mode Network (DMN) have shown significant interactions and overlapping functions in bottom-up and top-down mechanisms of attention. In the present study we tested if the SN, VAN, DAN and DMN connectivity can infer the gestational age (GA) at birth in a study group of 88 healthy neonates with GA at birth ranging from 28 to 40 weeks. We also ascertained whether the connectivity within each of the SN, VAN, DAN and DMN is able to infer the average functional connectivity of the others. The ability to infer GA at birth or another network's connectivity was evaluated using a multi-variate data-driven framework. A mediation analysis was performed in order to estimate the transmittance of change of a network’s functional connectivity (FC) over another mediated by the GA.The VAN, DAN and the DMN infer the GA at birth (p<0.05). The SN, DMN and VAN were able to infer the average connectivity over the other networks (p<0.05). Mediation analysis between VAN’s and DAN’s inference on GA found reciprocal transmittance of change of VAN’s and DAN’s connectivity (p<0.05). Our findings suggest that the VAN has a prominent role in the bottom-up salience detection in early infancy and that the role of the VAN and the SN may overlap in the bottom-up control of attention.


Sign in / Sign up

Export Citation Format

Share Document