scholarly journals Altered working memory-related brain activity in children at familial high risk for psychosis: A preliminary study

2022 ◽  
Vol 240 ◽  
pp. 186-192
Kevin C.A. van Gool ◽  
Guusje Collin ◽  
Clemens C.C. Bauer ◽  
Elena Molokotos ◽  
Raquelle I. Mesholam-Gately ◽  
2012 ◽  
Vol 26 (3) ◽  
pp. 288-303 ◽  
Larry J. Seidman ◽  
Eric C. Meyer ◽  
Anthony J. Giuliano ◽  
Hans C. Breiter ◽  
Jill M. Goldstein ◽  

2016 ◽  
Vol 170 (1) ◽  
pp. 115-122 ◽  
Paulo L. Lizano ◽  
Matcheri S. Keshavan ◽  
Neeraj Tandon ◽  
Ian T. Mathew ◽  
Suraj Sarvode Mothi ◽  

2015 ◽  
Vol 9 ◽  
pp. 555-563 ◽  
Kerstin Bendfeldt ◽  
Renata Smieskova ◽  
Nikolaos Koutsouleris ◽  
Stefan Klöppel ◽  
André Schmidt ◽  

2020 ◽  
Vol 216 ◽  
pp. 496-503 ◽  
Sheeba Arnold Anteraper ◽  
Guusje Collin ◽  
Xavier Guell ◽  
Timothy Scheinert ◽  
Elena Molokotos ◽  

2015 ◽  
Vol 30 (5) ◽  
pp. 633-640 ◽  
I. Falkenberg ◽  
C. Chaddock ◽  
R.M. Murray ◽  
C. McDonald ◽  
G. Modinos ◽  

AbstractImpaired working memory is a core feature of schizophrenia and is linked with altered engagement the lateral prefrontal cortex. Although altered PFC activation has been reported in people with increased risk of psychosis, at present it is not clear if this neurofunctional alteration differs between familial and clinical risk states and/or increases in line with the level of psychosis risk. We addressed this issue by using functional MRI and a working memory paradigm to study familial and clinical high-risk groups. We recruited 17 subjects at ultra-high-risk (UHR) for psychosis, 10 non-affected siblings of patients with schizophrenia (familial high risk [FHR]) and 15 healthy controls. Subjects were scanned while performing the N-back working memory task. There was a relationship between the level of task-related deactivation in the medial PFC and precuneus and the level of psychosis risk, with deactivation weakest in the UHR group, greatest in healthy controls, and at an intermediate level in the FHR group. In the high-risk groups, activation in the precuneus was associated with the level of negative symptoms. These data suggest that increased vulnerability to psychosis is associated with a failure to deactivate in the medial PFC and precuneus during a working memory task, and appears to be most evident in subjects at clinical, as opposed to familial high risk.

2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.

2021 ◽  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.

Francesco Panico ◽  
Stefania De Marco ◽  
Laura Sagliano ◽  
Francesca D’Olimpio ◽  
Dario Grossi ◽  

AbstractThe Corsi Block-Tapping test (CBT) is a measure of spatial working memory (WM) in clinical practice, requiring an examinee to reproduce sequences of cubes tapped by an examiner. CBT implies complementary behaviors in the examiners and the examinees, as they have to attend a precise turn taking. Previous studies demonstrated that the Prefrontal Cortex (PFC) is activated during CBT, but scarce evidence is available on the neural correlates of CBT in the real setting. We assessed PFC activity in dyads of examiner–examinee participants while completing the real version of CBT, during conditions of increasing and exceeding workload. This procedure allowed to investigate whether brain activity in the dyads is coordinated. Results in the examinees showed that PFC activity was higher when the workload approached or reached participants’ spatial WM span, and lower during workload conditions that were largely below or above their span. Interestingly, findings in the examiners paralleled the ones in the examinees, as examiners’ brain activity increased and decreased in a similar way as the examinees’ one. In the examiners, higher left-hemisphere activity was observed suggesting the likely activation of non-spatial WM processes. Data support a bell-shaped relationship between cognitive load and brain activity, and provide original insights on the cognitive processes activated in the examiner during CBT.

Sign in / Sign up

Export Citation Format

Share Document