scholarly journals Direct dynamical characterization of higher-order topological phases with nested band inversion surfaces

2021 ◽  
Author(s):  
Linhu Li ◽  
Weiwei Zhu ◽  
Jiangbin Gong
Author(s):  
Celia K S Lau ◽  
Meghan Jelen ◽  
Michael D Gordon

Abstract Feeding is an essential part of animal life that is greatly impacted by the sense of taste. Although the characterization of taste-detection at the periphery has been extensive, higher order taste and feeding circuits are still being elucidated. Here, we use an automated closed-loop optogenetic activation screen to detect novel taste and feeding neurons in Drosophila melanogaster. Out of 122 Janelia FlyLight Project GAL4 lines preselected based on expression pattern, we identify six lines that acutely promote feeding and 35 lines that inhibit it. As proof of principle, we follow up on R70C07-GAL4, which labels neurons that strongly inhibit feeding. Using split-GAL4 lines to isolate subsets of the R70C07-GAL4 population, we find both appetitive and aversive neurons. Furthermore, we show that R70C07-GAL4 labels putative second-order taste interneurons that contact both sweet and bitter sensory neurons. These results serve as a resource for further functional dissection of fly feeding circuits.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
He Gao ◽  
Haoran Xue ◽  
Zhongming Gu ◽  
Tuo Liu ◽  
Jie Zhu ◽  
...  

AbstractTopological phases of matter are classified based on their Hermitian Hamiltonians, whose real-valued dispersions together with orthogonal eigenstates form nontrivial topology. In the recently discovered higher-order topological insulators (TIs), the bulk topology can even exhibit hierarchical features, leading to topological corner states, as demonstrated in many photonic and acoustic artificial materials. Naturally, the intrinsic loss in these artificial materials has been omitted in the topology definition, due to its non-Hermitian nature; in practice, the presence of loss is generally considered harmful to the topological corner states. Here, we report the experimental realization of a higher-order TI in an acoustic crystal, whose nontrivial topology is induced by deliberately introduced losses. With local acoustic measurements, we identify a topological bulk bandgap that is populated with gapped edge states and in-gap corner states, as the hallmark signatures of hierarchical higher-order topology. Our work establishes the non-Hermitian route to higher-order topology, and paves the way to exploring various exotic non-Hermiticity-induced topological phases.


2021 ◽  
pp. 2004376
Author(s):  
Anton Vakulenko ◽  
Svetlana Kiriushechkina ◽  
Mingsong Wang ◽  
Mengyao Li ◽  
Dmitry Zhirihin ◽  
...  

Author(s):  
Behrouz Tavakol ◽  
Guillaume Froehlicher ◽  
Douglas P. Holmes ◽  
Howard A. Stone

Lubrication theory is broadly applicable to the flow characterization of thin fluid films and the motion of particles near surfaces. We offer an extension to lubrication theory by starting with Stokes equations and considering higher-order terms in a systematic perturbation expansion to describe the fluid flow in a channel with features of a modest aspect ratio. Experimental results qualitatively confirm the higher-order analytical solutions, while numerical results are in very good agreement with the higher-order analytical results. We show that the extended lubrication theory is a robust tool for an accurate estimate of pressure drop in channels with shape changes on the order of the channel height, accounting for both smooth and sharp changes in geometry.


1973 ◽  
Vol 38 (3) ◽  
pp. 481-488 ◽  
Author(s):  
Leslie H. Tharp

The first section of this paper is concerned with the intrinsic properties of elementary monadic logic (EM), and characterizations in the spirit of Lindström [2] are given. His proofs do not apply to monadic logic since relations are used, and intrinsic properties of EM turn out to differ in certain ways from those of the elementary logic of relations (i.e., the predicate calculus), which we shall call EL. In the second section we investigate connections between higher-order monadic and polyadic logics.EM is the subsystem of EL which results by the restriction to one-place predicate letters. We omit constants (for simplicity) but take EM to contain identity. Let a type be any finite sequence (possibly empty) of one-place predicate letters. A model M of type has a nonempty universe ∣M∣ and assigns to each predicate letter P of a subset PM of ∣M∣.Let us take a monadic logic L to be any collection of classes of models, called L-classes, satisfying the following:1. All models in a given L-class are of the same type (called the type of the class).2. Isomorphic models lie in the same L-classes.3. If and are L-classes of the same type, then and are L-classes.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 894 ◽  
Author(s):  
Alfonso Maiellaro ◽  
Francesco Romeo ◽  
Carmine Antonio Perroni ◽  
Vittorio Cataudella ◽  
Roberta Citro

In this work, the general problem of the characterization of the topological phase of an open quantum system is addressed. In particular, we study the topological properties of Kitaev chains and ladders under the perturbing effect of a current flux injected into the system using an external normal lead and derived from it via a superconducting electrode. After discussing the topological phase diagram of the isolated systems, using a scattering technique within the Bogoliubov–de Gennes formulation, we analyze the differential conductance properties of these topological devices as a function of all relevant model parameters. The relevant problem of implementing local spectroscopic measurements to characterize topological systems is also addressed by studying the system electrical response as a function of the position and the distance of the normal electrode (tip). The results show how the signatures of topological order affect the electrical response of the analyzed systems, a subset of which being robust also against the effects of a moderate amount of disorder. The analysis of the internal modes of the nanodevices demonstrates that topological protection can be lost when quantum states of an initially isolated topological system are hybridized with those of the external reservoirs. The conclusions of this work could be useful in understanding the topological phases of nanowire-based mesoscopic devices.


2020 ◽  
Vol 121 ◽  
pp. 105831
Author(s):  
S. John Sundaram ◽  
Jerald V. Ramaclus ◽  
M. Panneerselvam ◽  
M. Jaccob ◽  
Priya Antony ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document