Duration of light-emitting diode (LED) supplemental lighting providing far-red radiation during seedling production influences subsequent time to flower of long-day annuals

2021 ◽  
Vol 281 ◽  
pp. 109956
Author(s):  
Annika E. Kohler ◽  
Roberto G. Lopez
2013 ◽  
Vol 23 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Celina Gómez ◽  
Robert C. Morrow ◽  
C. Michael Bourget ◽  
Gioia D. Massa ◽  
Cary A. Mitchell

Electric supplemental lighting can account for a significant proportion of total greenhouse energy costs. Thus, the objectives of this study were to compare high-wire tomato (Solanum lycopersicum) production with and without supplemental lighting and to evaluate two different lighting positions + light sources [traditional high-pressure sodium (HPS) overhead lighting (OHL) lamps vs. light-emitting diode (LED) intracanopy lighting (ICL) towers] on several production and energy-consumption parameters for two commercial tomato cultivars. Results indicated that regardless of the lighting position + source, supplemental lighting induced early fruit production and increased node number, fruit number (FN), and total fruit fresh weight (FW) for both cultivars compared with unsupplemented controls for a winter-to-summer production period. Furthermore, no productivity differences were measured between the two supplemental lighting treatments. The energy-consumption metrics indicated that the electrical conversion efficiency for light-emitting intracanopy lighting (LED-ICL) into fruit biomass was 75% higher than that for HPS-OHL. Thus, the lighting cost per average fruit grown under the HPS-OHL lamps was 403% more than that of using LED-ICL towers. Although no increase in yield was measured using LED-ICL, significant energy savings for lighting occurred without compromising fruit yield.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Namiko Yamori ◽  
Yoriko Matsushima ◽  
Wataru Yamori

In indoor environments such as hotels, the light intensity is generally insufficient for managing plants, and flower buds often fail to open. Lamps placed above (downward lighting) take up space. We assessed the applicability of lighting from underneath (upward lighting) for the indoor management of roses. We grew plants indoors in dim light for 2 weeks under three conditions: 1) without supplemental lighting, 2) with downward light-emitting diode (LED) lighting, and 3) with LED lighting. We quantified photosynthetic components (chlorophyll and rubisco) and the maximum quantum yield of photosystem II (Fv/Fm, an indicator of plant health) to determine the effects of each treatment on the quality and photosynthetic abilities of the leaves. We determined the ratios of dead and opened flower buds to elucidate the effects of supplemental lighting on flower bud maturation. Management without supplemental lighting decreased the number of flowers and resulted in lower-leaf senescence. Downward LED lighting promoted blooming but also resulted in lower-leaf senescence. However, upward LED lighting promoted blooming and maintained the photosynthetic abilities of the leaves, including the lower leaves. This study shows a strong case for using upward LED lighting in appropriate settings for indoor plant management and LED-based horticulture.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1849
Author(s):  
Onofrio Davide Palmitessa ◽  
Beniamino Leoni ◽  
Francesco Fabiano Montesano ◽  
Francesco Serio ◽  
Angelo Signore ◽  
...  

In the Mediterranean region, tomato plants are often cultivated in two short cycles per year to avoid the heat of summer and the low solar radiation of winter. Supplementary light (SL) makes it possible to cultivate during the dark season. In this experiment, a tomato F1 hybrid cultivar DRW7723 was cultivated in a greenhouse for a fall-winter cycle. After transplant, light emitting diode (LED) interlighting, with two light spectra (red + blue vs. red + blue + far-red) was applied as SL. Plant growth, yield, gas exchange, nutrient solution (NS) consumption, and fruit quality were analyzed. In general, the effects of adding far-red radiation were not visible on the parameters analyzed, although the yield was 27% higher in plants grown with SL than those grown without. Tomatoes had the same average fresh weight between SL treatments, but the plants grown with SL produced 16% more fruits than control. Fruit quality, gas exchange and NS uptake were not influenced by the addition of far-red light. Interlighting is, therefore, a valid technique to increase fruit production in winter but at our latitude the effects of adding far-red radiation are mitigated by available sunlight.


2015 ◽  
Vol 33 (4) ◽  
pp. 428-433
Author(s):  
Nezihe Koksal ◽  
Meral Incesu ◽  
Ahmet Teke

ABSTRACT: Pansy (Viola cornuta) is a facultative long-day plant that flowers from October until March in Turkey. During the winter months, low light levels can limit plant growth and development. Light emitting diodes (LEDs) can provide supplemental lighting in greenhouses which produce same light intensity with less energy than conventional incandescent lighting. Light emitting diode technologies have enabled affordable and efficient light systems to be installed in greenhouses and plastic tunnels in the field. In this experiment we evaluated the effects of supplemental red-orange LED lightening on the growth and development of pansy cv. Blue Blotch grown in plastic tunnels. The energy, which LEDs are to consume, was provided through a solar panel system with the aim of drawing attention to the cleanliness of solar energy source. Five hours of supplement LED lighting was applied after dusk starting from November to February. Pansy growth and development parameters were compared with non-light supplied control plants. Supplemental LED lighting significantly increased plant biomass weight, flower number and leaves number at the rate of 52%, 72%, and 47%, respectively. Moreover, LED lighting increased plant growth rate (0.109 and 0.306 g of fresh weight), compared with the no light control. LED lighting, however, had no effect on length of stems, number of branches and the diameter of flowers. Thus, this study indicated that pansies are light limited during the winter months and supplemental LED lighting can significantly increase pansy growth and development.


HortScience ◽  
2017 ◽  
Vol 52 (2) ◽  
pp. 236-244 ◽  
Author(s):  
W. Garrett Owen ◽  
Roberto G. Lopez

Under low-light greenhouse conditions, anthocyanin pigmentation in vegetative tissues of red- or purple-leafed floricultural crops is not fully expressed and, consequently, plants are not as visually appealing to consumers. Our objective was to quantify the effect of end-of-production (EOP; before shipping) supplemental lighting (SL) of different light sources, qualities, and intensities on foliage color of geranium (Pelargonium ×hortorum L.H. Bailey ‘Black Velvet’) and purple fountain grass [Pennisetum ×advena Wipff and Veldkamp (formerly known as Pennisetum setaceum Forsk. Chiov. ‘Rubrum’)]. Plants were finished under early (Expt. 1) and late (Expt. 2) seasonal greenhouse ambient solar light and provided with 16 hours of day-extension lighting from low-intensity light-emitting diode (LED) lamps [7:11:33:49 blue:green:red:far-red light ratio (%); control] delivering 4.5 μmol·m−2·s−1, or 16 hours of EOP SL from high-pressure sodium (HPS) lamps delivering 70 μmol·m−2·s−1, or LED arrays (100:0, 87:13, 50:50, or 0:100 red:blue) delivering 100 μmol·m−2·s−1, or 0:100 red:blue LEDs delivering 25 or 50 μmol·m−2·s−1. Geranium and fountain grass chlorophyll content and leaf color were estimated using a SPAD-502 chlorophyll meter and Minolta tristimulus colorimeter, respectively. Relative chlorophyll content (RCC) and foliage L* (lightness), C* (chroma; a measure of saturation), and h° (hue angle; a measure of tone) values were significantly influenced by EOP SL and days of exposure. Generally, RCC of geranium and fountain grass increased from 3 to 14 days of exposure to EOP SL from HPS lamps and LEDs delivering 100 μmol·m−2·s−1. Under low daily light integrals (DLIs) [8.6 mol·m−2·d−1 (geranium) and 9.4 mol·m−2·d−1 (purple fountain grass)] EOP SL providing 100 μmol·m−2·s−1 of 100:0, 87:13, 50:50, or 0:100 red:blue light for ≥14 days resulted in lower L* (darker foliage), C* (saturated), and h° (orange to violet-red hues). Our data indicate that a minimum of 14 days of EOP SL providing 100 μmol·m−2·s−1 of 50:50 or 0:100 red:blue light enhanced foliage color of geranium and fountain grass leaves when plants were grown under a low greenhouse DLI ≤ 9 mol·m−2·d−1.


2014 ◽  
Vol 24 (4) ◽  
pp. 490-495 ◽  
Author(s):  
Fumiko Kohyama ◽  
Catherine Whitman ◽  
Erik S. Runkle

When the natural daylength is short, commercial growers of ornamental long-day plants (LDP) often provide low-intensity lighting to more rapidly and uniformly induce flowering. Incandescent (INC) lamps have been traditionally used for photoperiodic lighting because their spectrum, rich in red [R (600 to 700 nm)] and far-red [FR (700 to 800 nm)] light, is effective and they are inexpensive to purchase and install. Light-emitting diodes (LEDs) are much more energy efficient, can emit wavelengths of light that specifically regulate flowering, and last at least 20 times longer. We investigated the efficacy of two new commercial LED products developed for flowering applications on the LDP ageratum (Ageratum houstonianum), calibrachoa (Calibrachoa ×hybrida), two cultivars of dianthus (Dianthus chinensis), and two cultivars of petunia (Petunia ×hybrida). Plants were grown under a 9-hour short day without or with a 4-hour night interruption (NI) delivered by one of three lamp types: INC lamps (R:FR = 0.59), LED lamps with R and white (W) diodes [R + W (R:FR = 53.35)], and LED lamps with R, W, and FR diodes [R + W + FR (R:FR = 0.67)]. The experiment was performed twice, both at a constant 20 °C, but the photosynthetic daily light integral (DLI) during the second replicate (Rep. II) was twice that in the first (Rep. I). In all crops and in both experimental replicates, time to flower, flower or inflorescence and node number, and plant height were similar under the R + W + FR LEDs and the INC lamps. However, in Rep. I, both petunia cultivars developed more nodes and flowering was delayed under the R + W LEDs compared with the INC or R + W + FR LEDs. In Rep. II, petunia flowering time and node number were similar under the three NI treatments. Plant height of both dianthus cultivars was generally shorter under the NI treatment without FR light (R + W LEDs). These results indicate that when the DLI is low (e.g., ≤6 mol·m−2·d−1), FR light is required in NI lighting for the most rapid flowering of some but not all LDP; under a higher DLI, the flowering response to FR light in NI lighting is apparently diminished.


HortScience ◽  
2017 ◽  
Vol 52 (1) ◽  
pp. 72-77 ◽  
Author(s):  
Marc W. van Iersel ◽  
David Gianino

Supplemental lighting in greenhouses is often needed for year-round production of high-quality crops. However, the electricity needed for supplemental lighting can account for a substantial part of overall production costs. Our objective was to develop more efficient control methods for supplemental lighting, taking advantage of the dimmability of light-emitting diode (LED) grow lights. We compared 14 hours per day of full power supplemental LED lighting to two other treatments: 1) turning the LEDs on, at full power, only when the ambient photosynthetic photon flux (PPF) dropped below a specific threshold, and 2) adjusting the duty cycle of the LEDs so that the LED lights provided only enough supplemental PPF to reach a preset threshold PPF. This threshold PPF was adjusted daily from 50 to 250 μmol·m−2·s−1. Turning the LED lights on at full power and off based on a PPF threshold was not practical since this at times resulted in the lights going on and off frequently. Adjusting the duty cycle of the LED lights based on PPF measurements underneath the light bar provided excellent control of PPF, with 5-minute averages typically being within 0.2 μmol·m−2·s−1 of the threshold PPF. Continuously adjusting the duty cycle of the LED lights reduced electricity use by 20% to 92%, depending on the PPF threshold and daily light integral (DLI) from sunlight. Simulations based on net photosynthesis (An) − PPF response curves indicated that there are large differences among species in how efficiently supplemental PPF stimulates An. When there is little or no sunlight, An of Heuchera americana is expected to increase more than that of Campanula portenschlagiana when a low level of supplemental light is provided. Conversely, when ambient PPF >200 μmol·m−2·s−1, supplemental lighting will have little impact on An of H. americana, but can still results in significant increases in An of C. portenschlagiana (1.7 to 6.1 μmol·m−2·s−1 as supplemental PPF increases from 50 to 250 μmol·m−2·s−1). Adjusting the duty cycle of the LEDs based on PPF levels assures that supplemental light is provided when plants can use that supplemental light most efficiently. Implementing automated duty cycle control of LED grow lights is simple and low cost. This approach can increase the cost effectiveness of supplemental lighting, because of the associated energy savings.


2015 ◽  
Vol 45 (12) ◽  
pp. 1711-1719 ◽  
Author(s):  
Kent G. Apostol ◽  
R. Kasten Dumroese ◽  
Jeremiah R. Pinto ◽  
Anthony S. Davis

Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure sodium (HPS) lamps on growth and physiology of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings. We used three latitudinal sources for each species: British Columbia (BC), Idaho (ID), and New Mexico (NM). Container seedlings were grown for 17 weeks in the greenhouse under an 18 h photoperiod of ambient solar light supplemented with light delivered from HPS or LED. In general, seedlings grown under LED had significantly greater growth, gas exchange rates, and chlorophyll contents than those seedlings grown under HPS. The growth and physiological responses to supplemental lighting varied greatly among species and seed sources. Generally, LED-grown seedlings from BC had the greatest growth and tissue dry mass followed by ID and NM populations. Compared with HPS, the significant increase in seedling growth and concomitant energy savings with LED (29% energy consumption relative to HPS) demonstrates the promise of using LED as PAR supplemental lighting for container seedling production.


HortScience ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 676-684 ◽  
Author(s):  
W. Garrett Owen ◽  
Roberto G. Lopez

Under low-light greenhouse conditions, such as those found in northern latitudes, foliage of red leaf lettuce (Lactuca sativa L.) varieties is often green and not visually appealing to consumers. Our objective was to quantify the effect of end-of-production (EOP; prior to harvest) supplemental lighting (SL) of different sources and intensities on foliage color of four red leaf lettuce varieties, ‘Cherokee’, ‘Magenta’, ‘Ruby Sky’, and ‘Vulcan’. Plants were finished under greenhouse ambient solar light and provided with 16-hours of day-extension lighting from low intensity light-emitting diode (LED) lamps [7:11:33:49 blue:green:red:far red (control)] delivering 4.5 μmol·m−2·s−1, or 16-hours of EOP SL from high-pressure sodium (HPS) lamps delivering 70 μmol·m−2·s−1, or LED arrays [100:0, 0:100, or 50:50 (%) red:blue] delivering 100 μmol·m−2·s−1, or 0:100 blue LEDs delivering 25 or 50 μmol·m−2·s−1. Relative chlorophyll content (RCC) and foliage L* (lightness), and chromametric a* (change from green to red) and b* (change from yellow to blue) values were significantly influenced by EOP SL and days of exposure. Generally, RCC of all varieties increased from day 3 to 14 when provided with EOP SL from the HPS lamps and LEDs delivering 100 μmol·m−2·s−1. End-of-production SL providing 100 μmol·m−2·s−1 of 100:0, 0:100, or 50:50 red:blue light for ≥5 days resulted in increasing a* (red) and decreasing L* (darker foliage), b* (blue), and h° (hue angle; a measure of tone) for all varieties. Our data suggests that a minimum of 5 days of EOP SL providing 100 μmol·m−2·s−1 of 100:0, 0:100, or 50:50 red:blue light enhanced red pigmentation of ‘Cherokee’, ‘Magenta’, ‘Ruby Sky’, and ‘Vulcan’ leaves when plants are grown under a low greenhouse daily light integrals (DLIs) <10 mol·m−2·d−1.


2015 ◽  
pp. 335-339
Author(s):  
K.G. Apostol ◽  
R. Kasten Dumroese ◽  
J.R. Pinto ◽  
J.S. Davis

Sign in / Sign up

Export Citation Format

Share Document