Mapping environmental land use conflict potentials and ecosystem services in agricultural watersheds

2018 ◽  
Vol 630 ◽  
pp. 827-838 ◽  
Author(s):  
Ilkwon Kim ◽  
Sebastian Arnhold
2020 ◽  
Vol 9 (2) ◽  
pp. 295-312
Author(s):  
Jang-Hwan Jo ◽  
Moon-Ki Choi ◽  
Oh Seok Kim ◽  
Kyeong-hak Lee ◽  
Chang-Bae Lee

1977 ◽  
Vol 12 (1) ◽  
pp. 121-134 ◽  
Author(s):  
G.H. Neilsen ◽  
A.F. Mackenzie

Abstract Seven agricultural watersheds in southwestern Quebec and southeastern Ontario, ranging in area from 2,000 to 20,000 hectares, were monitored systematically during 1973–75 for soluble inorganic nitrogen, total soluble phosphorus, calcium, magnesium, potassium, sulfate-sulfur, chemical oxidation demand, discharge, suspended sediment concentration, sediment Kjeldahl nitrogen, Bray extractable phosphorus, and ammonium acetate extractable calcium, magnesium and potassium. For 1974–75, annual Kg/ha, loss rates were calculated for the soluble and sediment associated nutrients. Losses varied with nutrient and watershed, with volume of runoff being an important control of nutrient loss variation. Significant amounts of SO4−S in precipitation were suggested by an average watershed soluble N:P:S loss ratio of 10:1:92. Sediment nutrient losses were especially important for N and P, comprising over 40% of their total loss. The importance of spring snow-melt runoff was demonstrated by the high proportion of all nutrients lost at this time. Correlations of nutrient loss, land use and soils suggested that certain land uses resulted in increased stream nutrient losses while increased watershed area of soils with a high surface runoff potential was particularly conducive to increased soluble nutrient and sediment losses.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 770
Author(s):  
Meine van Noordwijk

Agroforestry, land use at the agriculture-forestry interface that implies the presence of trees on farms and/or farmers in forests, has a history that may be as old as agriculture, but as an overarching label and topic of formal scientific analysis, it is in its fifth decade [...]


2021 ◽  
Vol 14 (14) ◽  
Author(s):  
Syed Atif Bokhari ◽  
Zafeer Saqib ◽  
Amjad Ali ◽  
Arif Mahmud ◽  
Nadia Akhtar ◽  
...  

2021 ◽  
Vol 71 ◽  
pp. 101999
Author(s):  
Yuan Gao ◽  
Jinman Wang ◽  
Min Zhang ◽  
Sijia Li

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 616
Author(s):  
Jie Gao ◽  
Xuguang Tang ◽  
Shiqiu Lin ◽  
Hongyan Bian

The ecosystem services (ESs) provided by mountain regions can bring about benefits to people living in and around the mountains. Ecosystems in mountain areas are fragile and sensitive to anthropogenic disturbance. Understanding the effect of land use change on ESs and their relationships can lead to sustainable land use management in mountain regions with complex topography. Chongqing, as a typical mountain region, was selected as the site of this research. The long-term impacts of land use change on four key ESs (i.e., water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ)) and their relationships were assessed from the past to the future (at five-year intervals, 1995–2050). Three future scenarios were constructed to represent the ecological restoration policy and different socioeconomic developments. From 1995 to 2015, WY and SC experienced overall increases. CS and HQ increased slightly at first and then decreased significantly. A scenario analysis suggested that, if the urban area continues to increase at low altitudes, by 2050, CS and HQ are predicted to decrease moderately. However, great improvements in SC, HQ, and CS are expected to be achieved by the middle of the century if the government continues to make efforts towards vegetation restoration on the steep slopes.


Sign in / Sign up

Export Citation Format

Share Document