Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram River Basin, Thailand

2019 ◽  
Vol 652 ◽  
pp. 189-201 ◽  
Author(s):  
Siriwat Boonwichai ◽  
Sangam Shrestha ◽  
Mukand S. Babel ◽  
Sutat Weesakul ◽  
Avishek Datta
CATENA ◽  
2022 ◽  
Vol 209 ◽  
pp. 105859
Author(s):  
Sangam Shrestha ◽  
Binod Bhatta ◽  
Rocky Talchabhadel ◽  
Salvatore Gonario Pasquale Virdis

Author(s):  
Siriwat Boonwichai ◽  
Sangam Shrestha ◽  
Pragya Pradhan ◽  
Mukand S. Babel ◽  
Avishek Datta

Abstract This study investigates the potential impacts of climate change on water resources and evaluates adaptation strategies on rainfed rice water management under climate change scenarios in the Songkhram River Basin, Thailand. The Soil and Water Assessment Tool (SWAT) model was used to project the future water availability under climate change scenarios for the period of 2020–2044. Future annual water availability is expected to remain unchanged due to unchanged future rainfall but expected to reduce from June to November due to changes in seasonal rainfall. The effects of supplying irrigation water to reduce the impact of climate change and increase rainfed rice production were evaluated. To increase the rice production by 15%, it is proposed to construct a reservoir with a capacity of below 65 MCM in each of the 15 sub-basins to fulfill the irrigation water requirements during the rainfed rice season. Alternatively, adaptation at the farm scale can be implemented by constructing ponds with a capacity of 900 m3 to store water for 1 ha of rice field to meet the potential rice yield during the non-rainfed rice season. The results of this study are helpful to policymakers in understanding the potential impacts of climate change and the formulation of adaptation strategies for water and rice sectors in the basin.


2020 ◽  
Vol 27 (18) ◽  
pp. 22568-22578
Author(s):  
Ghulam Shabbir ◽  
Tasneem Khaliq ◽  
Ashfaq Ahmad ◽  
Muhammad Saqib

2018 ◽  
Vol 5 (2) ◽  
pp. 63-74
Author(s):  
S. Boonwicahi ◽  
S. Shrestha

Songkhram river basin, located in northeast Thailand, is where most of the farmers grow rice in rainy season. The water shortage frequently occurs during dry season as the basin has no dam along the river to store water for agriculture purposes. The river connected with Mekong River. Floods occur in many areas because high rainfall density in the basin and backwater effect from Mekong River. The climate change, temperature rise and uncertainty of rainfall, is significant influence to water availability for agriculture sector as well as agriculture production especially rice production. The study assesses the impact of climate change on irrigation water requirement (IWR) and rice production for KDML 105 rice variety in wet season (July – November) using DSSAT crop simulation model. The predicted of IWR and rice production were used an ensemble of five Regional Circulation Models (RCMs) under RCP4.5 and RCP8.5 scenarios for three future periods. The results show an increasing trend in both maximum and minimum temperature. The maximum and minimum temperatures are expected to rise up to 1.9 °C relative to baseline period (1980-2004) under RCP8.5 scenario in 2080s (2070–2094). Rainfall may decrease in the first future period, 2030s (2020 – 2044), and will rise in the 2055s (2045–2069) and 2080s (2070-2094) periods. Rainfall is projected to increase by 13% and 9% relative to baseline period for RCP4.5 and RCP8.5 scenarios respectively in the last future periods (2080s). Therefore, the water shortage might occur in the first period. The middle and last periods might have flood due to higher of rainfall. The trend of IWR is expected to increase, which may rise by 18% and 5% in 2080s under RCP4.5 and RCP8.5 scenario espectively. Due to the increment of temperature and IWR, rainfed rice yield is found to decrease in the future. The rainfed rice yield may reduce by 14% and 10% for RCP4.5 and RCP8.5 scenario respectively in 2080s. However, the IWR is higher due to temperature rise in the future. The increasing of reservoir capacity and improve the water management practices might reduce the crop water deficit and increase crop production.


2020 ◽  
Vol 186 ◽  
pp. 109544 ◽  
Author(s):  
Thundorn Okwala ◽  
Sangam Shrestha ◽  
Suwas Ghimire ◽  
S. Mohanasundaram ◽  
Avishek Datta

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 600
Author(s):  
Shahjahan Ali ◽  
Bikash Chandra Ghosh ◽  
Ataul Gani Osmani ◽  
Elias Hossain ◽  
Csaba Fogarassy

A lack of adaptive capacities for climate change prevents poor farmers from diversifying agricultural production in Bangladesh’s drought-resilient areas. Climate change adaptation strategies can reduce the production risk relating to unforeseen climatic shocks and increase farmers’ food, income, and livelihood security. This paper investigates rice farmers’ adaptive capacities to adapt climate change strategies to reduce the rice production risk. The study collected 400 farm-level micro-data of rice farmers with the direct cooperation of Rajshahi District. The survey was conducted during periods between June and July of 2020. Rice farmers’ adaptive capacities were estimated quantitatively by categorizing the farmers as high, moderate, and low level adapters to climate change adaptation strategies. In this study, a Cobb–Douglas production function was used to measure the effects of farmers’ adaptive capacities on rice production. The obtained results show that farmers are moderately adaptive in terms of adaptation strategies on climate change and the degree of adaptation capacities. Agronomic practices such as the quantity of fertilizer used, the amount of labor, the farm’s size, and extension contacts have a substantial impact on rice production. This study recommends that a farmer more significantly adjusts to adaptation strategies on climate change to reduce rice production. These strategies will help farmers to reduce the risk and produce higher quality rice. Consequently, rice farmers should facilitate better extension services and change the present agronomic practice to attain a higher adaptation status. It can be very clearly seen that low adaptability results in lower rice yields.


2016 ◽  
Vol 140 (2) ◽  
pp. 195-208 ◽  
Author(s):  
Rohini P. Devkota ◽  
Vishnu P. Pandey ◽  
Utsav Bhattarai ◽  
Harshana Shrestha ◽  
Shrijwal Adhikari ◽  
...  

2011 ◽  
Vol 62 (3) ◽  
pp. 223 ◽  
Author(s):  
Allison Aldous ◽  
James Fitzsimons ◽  
Brian Richter ◽  
Leslie Bach

Climate change is expected to have significant impacts on hydrologic regimes and freshwater ecosystems, and yet few basins have adequate numerical models to guide the development of freshwater climate adaptation strategies. Such strategies can build on existing freshwater conservation activities, and incorporate predicted climate change impacts. We illustrate this concept with three case studies. In the Upper Klamath Basin of the western USA, a shift in land management practices would buffer this landscape from a declining snowpack. In the Murray–Darling Basin of south-eastern Australia, identifying the requirements of flood-dependent natural values would better inform the delivery of environmental water in response to reduced runoff and less water. In the Savannah Basin of the south-eastern USA, dam managers are considering technological and engineering upgrades in response to more severe floods and droughts, which would also improve the implementation of recommended environmental flows. Even though the three case studies are in different landscapes, they all contain significant freshwater biodiversity values. These values are threatened by water allocation problems that will be exacerbated by climate change, and yet all provide opportunities for the development of effective climate adaptation strategies.


Sign in / Sign up

Export Citation Format

Share Document