Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions

2019 ◽  
Vol 662 ◽  
pp. 168-179 ◽  
Author(s):  
Wenlei Wang ◽  
Yan Xu ◽  
TianXiang Chen ◽  
Lei Xing ◽  
Kai Xu ◽  
...  
2019 ◽  
Vol 40 ◽  
pp. 101526 ◽  
Author(s):  
Tianxiang Chen ◽  
Wenlei Wang ◽  
Kai Xu ◽  
Yan Xu ◽  
Dehua Ji ◽  
...  

2019 ◽  
Vol 95 (6) ◽  
pp. 563-568
Author(s):  
Hermine T. Abrahamyan ◽  
S. M. Minasyan

There were investigated changes in indices of the activity of regulatory mechanisms of heart rhythm in student under exam stress conditions and the possibility of their correction with aid of aromatherapy. The examination stress was established to be accompanied by pronounced shifts of integral and spectral indices of heart rhythm in students, indicating to the activation of the sympathetic circuit of Autonomic Nervous System in conditions of examination stress. A positive, relaxation impact of the essential oil of orange on the investigated indices was also recorded. The latter is expressed by weakly pronounced changes or lack of them in data of integral and spectral heart rate indices in students from the experimental group, that indicates to the stabilizing effect of used ethereal oil on the psycho-physiological state of students in conditions of exam stress


Author(s):  
Yin Shi ◽  
Han-Ming Shen ◽  
Vidya Gopalakrishnan ◽  
Nancy Gordon

Autophagy is a highly conserved catabolic process induced under various stress conditions to protect the cell from harm and allow survival in the face of nutrient- or energy-deficient states. Regulation of autophagy is complex, as cells need to adapt to a continuously changing microenvironment. It is well recognized that the AMPK and mTOR signaling pathways are the main regulators of autophagy. However, various other signaling pathways have also been described to regulate the autophagic process. A better understanding of these complex autophagy regulatory mechanisms will allow the discovery of new potential therapeutic targets. Here, we present a brief overview of autophagy and its regulatory pathways with emphasis on the epigenetic control mechanisms.


2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


Crisis ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Christopher M. Bloom ◽  
Shareen Holly ◽  
Adam M. P. Miller

Background: Historically, the field of self-injury has distinguished between the behaviors exhibited among individuals with a developmental disability (self-injurious behaviors; SIB) and those present within a normative population (nonsuicidal self-injury; NSSI),which typically result as a response to perceived stress. More recently, however, conclusions about NSSI have been drawn from lines of animal research aimed at examining the neurobiological mechanisms of SIB. Despite some functional similarity between SIB and NSSI, no empirical investigation has provided precedent for the application of SIB-targeted animal research as justification for pharmacological interventions in populations demonstrating NSSI. Aims: The present study examined this question directly, by simulating an animal model of SIB in rodents injected with pemoline and systematically manipulating stress conditions in order to monitor rates of self-injury. Methods: Sham controls and experimental animals injected with pemoline (200 mg/kg) were assigned to either a low stress (discriminated positive reinforcement) or high stress (discriminated avoidance) group and compared on the dependent measures of self-inflicted injury prevalence and severity. Results: The manipulation of stress conditions did not impact the rate of self-injury demonstrated by the rats. The results do not support a model of stress-induced SIB in rodents. Conclusions: Current findings provide evidence for caution in the development of pharmacotherapies of NSSI in human populations based on CNS stimulant models. Theoretical implications are discussed with respect to antecedent factors such as preinjury arousal level and environmental stress.


2007 ◽  
Author(s):  
S. I. Soroko ◽  
S. S. Bekshaev ◽  
V. P. Rozhkov

Sign in / Sign up

Export Citation Format

Share Document