Dispersal, genetic variation, and symbiont interaction network of heat-tolerant endosymbiont Durusdinium trenchii: Insights into the adaptive potential of coral to climate change

2020 ◽  
Vol 723 ◽  
pp. 138026 ◽  
Author(s):  
Biao Chen ◽  
Kefu Yu ◽  
Zhenjun Qin ◽  
Jiayuan Liang ◽  
Guanghua Wang ◽  
...  
Author(s):  
Ross Cunning

Some reef-building corals form symbioses with multiple algal partners that differ in ecologically important traits like heat tolerance. Coral bleaching and recovery can drive symbiont community turnover toward more heat-tolerant partners, and this ‘adaptive bleaching’ response can increase future bleaching thresholds by 1–2°C, aiding survival in warming oceans. However, this mechanism of rapid acclimatization only occurs in corals that are compatible with multiple symbionts, and only when the disturbance regime and competitive dynamics among symbionts are sufficient to bring about community turnover. The full scope of coral taxa and ecological scenarios in which symbiont shuffling occurs remains poorly understood, though its prevalence is likely to increase as warming oceans boost the competitive advantage of heat-tolerant symbionts, increase the frequency of bleaching events, and strengthen metacommunity feedbacks. Still, the constraints, limitations, and potential tradeoffs of symbiont shuffling suggest it will not save coral reef ecosystems; however, it may significantly improve the survival trajectories of some, or perhaps many, coral species. Interventions to manipulate coral symbionts and symbiont communities may expand the scope of their adaptive potential, which may boost coral survival until climate change is addressed.


2016 ◽  
Vol 6 (24) ◽  
pp. 8740-8755 ◽  
Author(s):  
David J. Muñoz ◽  
Kyle Miller Hesed ◽  
Evan H. Campbell Grant ◽  
David A. W. Miller

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Linda C. Weiss

Abstract Phenotypic plasticity describes the ability of an organism with a given genotype to respond to changing environmental conditions through the adaptation of the phenotype. Phenotypic plasticity is a widespread means of adaptation, allowing organisms to optimize fitness levels in changing environments. A core prerequisite for adaptive predictive plasticity is the existence of reliable cues, i.e. accurate environmental information about future selection on the expressed plastic phenotype. Furthermore, organisms need the capacity to detect and interpret such cues, relying on specific sensory signalling and neuronal cascades. Subsequent neurohormonal changes lead to the transformation of phenotype A into phenotype B. Each of these activities is critical for survival. Consequently, anything that could impair an animal’s ability to perceive important chemical information could have significant ecological ramifications. Climate change and other human stressors can act on individual or all of the components of this signalling cascade. In consequence, organisms could lose their adaptive potential, or in the worst case, even become maladapted. Therefore, it is key to understand the sensory systems, the neurobiology and the physiological adaptations that mediate organisms’ interactions with their environment. It is, thus, pivotal to predict the ecosystem-wide effects of global human forcing. This review summarizes current insights on how climate change affects phenotypic plasticity, focussing on how associated stressors change the signalling agents, the sensory systems, receptor responses and neuronal signalling cascades, thereby, impairing phenotypic adaptations.


2015 ◽  
Vol 85 (1) ◽  
pp. 3 ◽  
Author(s):  
Michelangelo Morganti

Recent climate change is altering the migratory behaviour of many bird species. An advancement in the timing of spring events and a shift in the geographical distribution have been detected for birds around the world. In particular, intra-Palearctic migratory birds have advanced arrivals in spring and shortened migratory distances by shifting northward their wintering grounds. These changes in migratory patterns are considered adaptive responses facilitating the adjustment of the life cycle to the phenological changes found in their breeding areas. However, in some cases, populations exposed to the same selective pressures do not show any appreciable adaptive change in their behaviour. Basing on the comparison of realized and non-realized adaptive changes, I propose here the formulation of a qualitative model that predicts the potential of migratory birds populations to change adaptively their migratory behaviour. The model assumes that the adaptive potential of migratory behaviour is fuelled by both genetic diversity and phenotypic plasticity. Populations of long-distance migrants are exposed to strong environmental canalization that largely eroded their phenotypic plasticity and reduced genetic variability, so that they show a very low amount of adaptive potential regarding migratory behaviour. On the contrary, partial-migrant populations have a highly varied genetic profile and are more plastic at the phenotypic level, and consequently show the highest amount of adaptive potential. Species with mainly social and mainly genetic determination of the migratory behaviour are separately treated in the model. Specific empirical models to foresee the adaptive strategies of wild bird populations that face to climate change can be derived from the general theoretical model. As example, a specific model about the shortening of migratory distances in Western European migratory bird is presented. Finally, a number of future research lines on the topic of adaptive potential of migratory behaviour are discussed, including some examples of concrete study cases. In conclusion, partial-migration emerge as the less known system and future research efforts on this topic are expected to be especially fruitful.


2021 ◽  
Vol 118 (48) ◽  
pp. e2104642118
Author(s):  
Marty Kardos ◽  
Ellie E. Armstrong ◽  
Sarah W. Fitzpatrick ◽  
Samantha Hauser ◽  
Philip W. Hedrick ◽  
...  

The unprecedented rate of extinction calls for efficient use of genetics to help conserve biodiversity. Several recent genomic and simulation-based studies have argued that the field of conservation biology has placed too much focus on conserving genome-wide genetic variation, and that the field should instead focus on managing the subset of functional genetic variation that is thought to affect fitness. Here, we critically evaluate the feasibility and likely benefits of this approach in conservation. We find that population genetics theory and empirical results show that conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations toward extinction. Focusing conservation efforts on presumably functional genetic variation will only be feasible occasionally, often misleading, and counterproductive when prioritized over genome-wide genetic variation. Given the increasing rate of habitat loss and other environmental changes, failure to recognize the detrimental effects of lost genome-wide genetic variation on long-term population viability will only worsen the biodiversity crisis.


2019 ◽  
Vol 116 (21) ◽  
pp. 10418-10423 ◽  
Author(s):  
Orly Razgour ◽  
Brenna Forester ◽  
John B. Taggart ◽  
Michaël Bekaert ◽  
Javier Juste ◽  
...  

Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modeling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate-adaptive genetic variation (evolutionary rescue potential). Considering climate-adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species’ future ranges. We show that although evolutionary rescue is possible, it depends on a population’s adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.


2019 ◽  
Vol 110 (7) ◽  
pp. 857-865 ◽  
Author(s):  
Mengmeng Lu ◽  
Konstantin V Krutovsky ◽  
Carol A Loopstra

Abstract Greenhouse gas emission and global warming are likely to cause rapid climate change within the natural range of loblolly pine over the next few decades, thus bringing uncertainty to their adaptation to the environment. Here, we studied adaptive genetic variation of loblolly pine and correlated genetic variation with bioclimatic variables using multivariate modeling methods—Redundancy Analysis, Generalized Dissimilarity Modeling, and Gradient Forests. Studied trees (N = 299) were originally sampled from their native range across eight states on the east side of the Mississippi River. Genetic variation was calculated using a total of 44,317 single-nucleotide polymorphisms acquired by exome target sequencing. The fitted models were used to predict the adaptive genetic variation on a large spatial and temporal scale. We observed east-to-west spatial genetic variation across the range, which presented evidence of isolation by distance. Different key factors drive adaptation of loblolly pine from different geographical regions. Trees residing near the northeastern edge of the range, spanning across Delaware and Maryland and mountainous areas of  Virginia, North Carolina, South Carolina, and northern Georgia, were identified to be most likely impacted by climate change based on the large difference in genetic composition under current and future climate conditions. This study provides new perspectives on adaptive genetic variation of loblolly pine in response to different climate scenarios, and the results can be used to target particular populations while developing adaptive forest management guidelines.


2017 ◽  
Vol 65 (2) ◽  
pp. 128
Author(s):  
Alex Arnold ◽  
Andrea Kodym ◽  
Nancy M. Endersby-Harshman ◽  
John Delpratt ◽  
Ary A. Hoffmann

Genetic studies can help guide effective ecological restoration by identifying potential source populations that contain the genetic variation necessary for adaptive potential, based on past landscape processes. Here we investigate genetic patterns in Gahnia radula (R.Br.) Benth., a sedge from south-eastern Australia that has potential for revegetation of disturbed areas. We developed microsatellite markers for this species and used them to show that it propagates mostly in a clonal manner. Levels of genetic variability differed between populations and the spatial scale of this variability within these populations is identified. A population used in recent restoration efforts and which sets seed has a particularly high level of variability. Recommendations are developed for sourcing material when using this sedge for revegetation.


Sign in / Sign up

Export Citation Format

Share Document