Genetic structure of Gahnia radula (Cyperaceae), a key sedge for revegetation

2017 ◽  
Vol 65 (2) ◽  
pp. 128
Author(s):  
Alex Arnold ◽  
Andrea Kodym ◽  
Nancy M. Endersby-Harshman ◽  
John Delpratt ◽  
Ary A. Hoffmann

Genetic studies can help guide effective ecological restoration by identifying potential source populations that contain the genetic variation necessary for adaptive potential, based on past landscape processes. Here we investigate genetic patterns in Gahnia radula (R.Br.) Benth., a sedge from south-eastern Australia that has potential for revegetation of disturbed areas. We developed microsatellite markers for this species and used them to show that it propagates mostly in a clonal manner. Levels of genetic variability differed between populations and the spatial scale of this variability within these populations is identified. A population used in recent restoration efforts and which sets seed has a particularly high level of variability. Recommendations are developed for sourcing material when using this sedge for revegetation.


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 422
Author(s):  
Gillian K. Brown ◽  
Elizabeth A. James ◽  
Catherine L. Simmons ◽  
Collin W. Ahrens

Paraseriantheslophantha subsp. lophantha (Leguminosae) is native to southwestern Australia, but has become naturalized in eastern Australia and in countries around the world. Previous studies have investigated the introduction sources for P. lophantha subsp. lophantha overseas, but here, we expand on the knowledge of genetic patterns in its native and naturalized range in Australia. Genetic patterns were examined using nine nuclear microsatellite loci and three chloroplast DNA markers. The native populations exhibited phylogeographic patterns, including north-south differentiation, and a genetic signal related to temperature gradients. Naturalized Australian populations displayed lower overall genetic variation and no phylogeographic patterns. Several naturalized populations separated by large distances (350–650 km) shared multi-locus genotypes, supporting the notion of a shared source of germplasm and possible inbreeding due to human-mediated introductions from a limited number of individuals and/or source populations within the native range. We advocate that management strategies are tailored to the distinct conservation aims underpinning conservation in native or naturalized populations. Within the native distribution, management should have a long-term aim to replicate historical evolutionary processes, whereas in naturalized populations, immediate actions may be required to reduce the abundance of P. lophantha subsp. lophantha and minimize its invasive impact on the recipient vegetation.



Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 785-805
Author(s):  
P T Spieth

ABSTRACT Electrophoretically detectable variation in the fungus Neurospora intermedia has been surveyed among isolates from natural populations in Malaya, Papua, Australia and Florida. The principal result is a pattern of genetic variation within and between populations that is qualitatively no different than the well documented patterns for Drosophila and humans. In particular, there is a high level of genetic variation, the majority of which occurs at the level of local populations. Evidence is presented which argues that N. intermedia has a population structure analogous to that of an annual vascular plant with a high level of vegetative reproduction. Sexual reproduction appears to be a regular feature in the biology of the species. Substantial heterokaryon function seems unlikely in natural populations of N. intermedia. Theoretical considerations concerning the mechanisms underlying the observed pattern of variation most likely should be consistent with haploid selection theory. The implications of this constraint upon the theory are discussed in detail, leading to the presentation of a model based upon the concept of environmental heterogeneity. The essence of the model, which is equally applicable to haploid and diploid situations, is a shifting distribution of multiple adaptive niches among local populations such that a given population has a small net selective pressure in favor of one allele or another, depending upon its particular distribution of niches. Gene flow among neighboring populations with differing net selective pressures is postulated as the principal factor underlying intrapopulational allozyme variation.



1969 ◽  
Vol 11 (3) ◽  
pp. 587-591 ◽  
Author(s):  
T. N. Khan

Variability in the host-reaction of barley to infection by Drechslera teres was examined in the parents and progeny of selected crosses under different environmental conditions of testing.The Ethiopian variety C.I. 5791 exhibits a consistently high level of resistance under a range of environmental conditions, which is in contrast to the Manchurian variety C.I. 2330. The sensitivity of the genes for resistance possessed by these varieties to environmental modifications is considered to depend upon their respective genetic backgrounds. Furthermore, variability of host reaction in the progeny of these resistant varieties was shown to be influenced by the genetic background of the susceptible parent used.The implications of these findings in the conduct and interpretation of genetic studies and in backcross breeding programs is discussed.



Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 827
Author(s):  
Lisa J. Martin ◽  
D Woodrow Benson

Congenital heart defects (CHD) are malformations present at birth that occur during heart development. Increasing evidence supports a genetic origin of CHD, but in the process important challenges have been identified. This review begins with information about CHD and the importance of detailed phenotyping of study subjects. To facilitate appropriate genetic study design, we review DNA structure, genetic variation in the human genome and tools to identify the genetic variation of interest. Analytic approaches powered for both common and rare variants are assessed. While the ideal outcome of genetic studies is to identify variants that have a causal role, a more realistic goal for genetic analytics is to identify variants in specific genes that influence the occurrence of a phenotype and which provide keys to open biologic doors that inform how the genetic variants modulate heart development. It has never been truer that good genetic studies start with good planning. Continued progress in unraveling the genetic underpinnings of CHD will require multidisciplinary collaboration between geneticists, quantitative scientists, clinicians, and developmental biologists.



2020 ◽  
Vol 36 (1) ◽  
pp. 71-80
Author(s):  
S. A Dattijo

Due to many ways by which they are exploited, insects and their products could be a very big business. They are sold for agricultural protection, crop pollination, as well as human, livestock and pet nutrition. In addition, their products are sold for pharmaceuticals, health, and the implements for research, art works and a host of other uses. This review focused on commercialization of insects and their products with a view of sharing existing knowledge on global commerce of various insects and their products. Available literature revealed that there was an increase in demand for edible insects in the United States of America and prices were as high as $150 kg-1. Similarly, between 2010 and 2015, animal feed market in the United Kingdom grew at 3.5% annually and is currently worth £5 billion. Because of its scarcity, high demand, and recognition of its healing properties, royal jelly, one of the most sought after from bee products commands astronomical price internationally. In addition, no any other industry could generate high level of employment as sericulture, especially in rural areas where it takes 11 workdays to produce a Kg of raw silk. The contribution insects and their products can give to improve the economy of a developing country such as Nigeria is considerable, but underestimated or neglected. Insects are unlikely to make a major contribution in the near future, but the idea that they are potential source of overcoming the economic problems is not as farfetched as it seemed. Therefore, there is the need to adopt an added value approach to insects and their products and sensitize as well as encourage small-scale farmers, who are disadvantaged in international market participation due to lack of access to information, services, technology or the capacity, to produce larger volumes of quality insect products.



2021 ◽  
Vol 118 (48) ◽  
pp. e2104642118
Author(s):  
Marty Kardos ◽  
Ellie E. Armstrong ◽  
Sarah W. Fitzpatrick ◽  
Samantha Hauser ◽  
Philip W. Hedrick ◽  
...  

The unprecedented rate of extinction calls for efficient use of genetics to help conserve biodiversity. Several recent genomic and simulation-based studies have argued that the field of conservation biology has placed too much focus on conserving genome-wide genetic variation, and that the field should instead focus on managing the subset of functional genetic variation that is thought to affect fitness. Here, we critically evaluate the feasibility and likely benefits of this approach in conservation. We find that population genetics theory and empirical results show that conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations toward extinction. Focusing conservation efforts on presumably functional genetic variation will only be feasible occasionally, often misleading, and counterproductive when prioritized over genome-wide genetic variation. Given the increasing rate of habitat loss and other environmental changes, failure to recognize the detrimental effects of lost genome-wide genetic variation on long-term population viability will only worsen the biodiversity crisis.



AGROFOR ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Miodrag DIMITRIJEVIĆ ◽  
Sofija PETROVIĆ ◽  
Borislav BANJAC ◽  
Goran BARAĆ

New challenges that food production is facing, requires novel approach inagricultural strategy. The scissors of growing demand for food and the limits of theEarth's resources are forcing plant breeders to run for the new borders, utilizing allthe available genetic variation in order to create fruitful and economically soundcultivars. Aegilops sp. (Poaceae) is a potential source of genetic variation for wheatimprovement. RAPD marker analysis was used in order to distinguish and evaluatedifferent genotypes of Aegilops sp. population samples from the collectiongathered during few years’ expeditions in South Adriatic, along the coastal, littoraland the inland parts of Montenegro. Ten randomly amplified polymorphic DNAmarkers (RAPDs) were tested: OPA-05, OPA-08, OPB-06, OPA-02, OPA-07,OPA-25, OPB-07, OPB-18, OPC-06, OPC-10 to examine genetic structuring on 18samples of 6 populations of different Aegilops sp. According to global AMOVA,75% of total gene diversity was attributable mostly to diversity within population(ΦPT =0.205 p=0.001), indicating that the groups of studied goat grass populationswere seemingly to differing genetically. In contrast, 25% of the variation camefrom variation among populations. According to PCoA, the distribution of 18 goatgrass accessions by Principal Coordinate Analysis shows 3 distinct groups. PCoaxis 1, PCo axis 2, and PCo axis 3 account for 20.8%, 18.2% and 14.1% of thevariation, respectively. The results showed that RAPD markers could be aconvenient tool for investigating genetic variation and for detecting geneticstructuring of populations. Genetic variability formed under natural selection wasentrenched.



2016 ◽  
Vol 42 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Katarzyna Buczkowska ◽  
Alina Bączkiewicz ◽  
Patrycja Gonera

Abstract Calypogeia azurea, a widespread, subboreal-montane liverwort species, is one of a few representatives of the Calypogeia genus that are characterized by the occurrence of blue oil bodies. The aim of the study was to investigate the genetic variation and population structure of C. azurea originating from different parts of its distribution range (Europe and North America). Plants of C. azurea were compared with C. peruviana, another Calypogeia species with blue oil bodies. In general, 339 gametophytes from 15 populations of C. azurea were examined. Total gene diversity (HT) estimated on the basis of nine isozyme loci of C. azurea at the species level was 0.201. The mean Nei’s genetic distance between European populations was equal to 0.083, whereas the mean genetic distance between populations originating from Europe and North America was 0.413. The analysis of molecular variance (AMOVA) showed that 69% of C. azurea genetic variation was distributed among regions (Europe and North America), 15% - among populations within regions, and 16% - within populations. Our study revealed that C. azurea showed genetic diversity within its geographic distribution. All examined samples classified as C. azurea differed in respect of isozyme patterns from C. peruviana.



1978 ◽  
Vol 26 (1) ◽  
pp. 175 ◽  
Author(s):  
GF Watson ◽  
MJ Littlejohn

A small area of overlap with hybridization characterizes the interaction between northern L. ewingi and L. paraewingi. Although significant levels of postmating isolation exist between the taxa, no evidence of reproductive character displacement in mating-call structure is apparent within the contact zone. No obvious environmental features appear to correlate with the position of the zone. Northern L. ewingi and L. verreauxi alpina also form a hybrid zone where their ranges meet, and the position of the zone appears to be correlated with altitude. The taxa are characterized by a high level of genetic compatibility and no mating-call differentiation is evident. However, despite hybridization with adjacent taxa, the distinctness of northern L. ewingi is maintained away from the areas of interaction, and hence it is considered specifically distinct from L. paraewingi and L. v. alpina. No natural interaction between northern L. ewingi and L. ewingi has been located. However, they are considered to be conspecific because of: their morphological resemblance; the high level of genetic compatibility between them; and, the similarity of each of their interactions with L. paraewingi and with L. v. alpina.



HortScience ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 338-342
Author(s):  
Antar Nasr El-Banna ◽  
Mohammed Elsayed El-Mahrouk ◽  
Mohammed Eraky El-Denary ◽  
Yaser Hassan Dewir ◽  
Yougasphree Naidoo

For the first time, genetic diversity among 14 ornamental palm accessions originating from different countries and grown in different regions in Egypt were examined. Identification of genetic variation and phylogenetic relationships in ornamental palms would be useful for its genetic identification, improvement, and conservation. Genetic polymorphism was analyzed using the randomly amplified polymorphic DNA (RAPD) as well as protein markers. The electrophoretic pattern of protein analysis produced 21 bands distributed in all accessions with molecular sizes ranging from 11.8 to 99.3 KDa. Some accessions possessed some bands, which were absent in other accessions and could be used for their identification. Furthermore, 10 RAPD selected primers were employed to determine genetic variation among the 14 palm genotypes as well as to test the effectiveness of RAPD primers as a genetic marker. RAPD analysis revealed a high level of polymorphism (100%) among the studied accessions. A total number of 310 amplified bands were generated across the studied genotypes with an average of 30 bands per primer. Cluster analysis using sequence alignment was done to generate a dendrogram verifying the relationship among the 14 studied ornamental palms, with an average similarity matrix range of 0.00 to 0.08 and 0.39 to 0.93 for RAPD and protein markers, respectively. It is concluded that, both SDS-protein and RAPD markers are equally important for genetic analysis and are suitable for the characterization of ornamental palm collection.



Sign in / Sign up

Export Citation Format

Share Document