Pond aquaculture effluents feed an anthropogenic nitrogen loop in a SE Asian estuary

2021 ◽  
Vol 756 ◽  
pp. 144083
Author(s):  
Lucia S. Herbeck ◽  
Uwe Krumme ◽  
Inga Nordhaus ◽  
Tim C. Jennerjahn
2014 ◽  
Vol 85 (1) ◽  
pp. 190-203 ◽  
Author(s):  
Lucia S. Herbeck ◽  
Miriam Sollich ◽  
Daniela Unger ◽  
Marianne Holmer ◽  
Tim C. Jennerjahn

2013 ◽  
Vol 21 (2) ◽  
pp. 217
Author(s):  
ZhengYong YANG ◽  
KeYong TANG ◽  
HuaiYu YANG ◽  
XiaoYun FAN

2020 ◽  
Vol 90 ◽  
pp. 102069
Author(s):  
Majid Askari Hesni ◽  
Aliakbar Hedayati ◽  
Amir Qadermarzi ◽  
Mojtaba Pouladi ◽  
Somayeh Zangiabadi ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 4995
Author(s):  
Marco Custódio ◽  
Paulo Cartaxana ◽  
Sebastián Villasante ◽  
Ricardo Calado ◽  
Ana Isabel Lillebø

Halophytes are salt-tolerant plants that can be used to extract dissolved inorganic nutrients from saline aquaculture effluents under a production framework commonly known as Integrated Multi-Trophic Aquaculture (IMTA). Halimione portulacoides (L.) Aellen (common name: sea purslane) is an edible saltmarsh halophyte traditionally consumed by humans living near coastal wetlands and is considered a promising extractive species for IMTA. To better understand its potential for IMTA applications, the present study investigates how artificial lighting and plant density affect its productivity and capacity to extract nitrogen and phosphorous in hydroponic conditions that mimic aquaculture effluents. Plant growth was unaffected by the type of artificial lighting employed—white fluorescent lights vs. blue-white LEDs—but LED systems were more energy-efficient, with a 17% reduction in light energy costs. Considering planting density, high-density units of 220 plants m−2 produced more biomass per unit of area (54.0–56.6 g m−2 day−1) than did low-density units (110 plants m−2; 34.4–37.1 g m−2 day−1) and extracted more dissolved inorganic nitrogen and phosphorus. Overall, H. portulacoides can be easily cultivated hydroponically using nutrient-rich saline effluents, where LEDs can be employed as an alternative to fluorescent lighting and high-density planting can promote higher yields and extraction efficiencies.


2021 ◽  
Vol 294 ◽  
pp. 112937
Author(s):  
Carla Patrícia Silva ◽  
Diogo Pereira ◽  
Vânia Calisto ◽  
Manuel A. Martins ◽  
Marta Otero ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 2006
Author(s):  
Ning Ding ◽  
Jingfeng Zhu ◽  
Xiao Li ◽  
Xiangrong Wang

The rapid growth of metropolitan regions is closely associated with high nitrogen (N) flows, which is known as the most important reason for widespread water pollution. It is, therefore, crucial to explore the spatiotemporal patterns of N budgets under intensive human activity. In this study, we estimated the long-term (2000–2015) N budgets by integrating the net anthropogenic nitrogen input (NANI) and the export coefficient model (ECM) in the Yangtze River Delta Urban Agglomeration (YRDUA), a typical metropolitan area with strong human disturbances. The results revealed that the NANI decreased by 10% from 2000 to 2015, while N exports showed a 6% increase. Hotspots for N budgets were found in the northeastern areas, where cropland and construction land were dominant. The linear regression showed a close relationship between the NANI and N export, and about 18% of the NANI was exported into the river system. By revealing the critical sources and drivers of N budgets over time, our work aimed to provide effective information for regional policy on nitrogen management. Future strategies, such as improving the fertilizer efficiency, optimizing the land use pattern, and controlling the population density, are necessary in order to address the environmental challenge concerns of excessive N.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
Beat Müller ◽  
Raoul Thoma ◽  
Kathrin B. L. Baumann ◽  
Cameron M. Callbeck ◽  
Carsten J. Schubert

AbstractFreshwater lakes are essential hotspots for the removal of excessive anthropogenic nitrogen (N) loads transported from the land to coastal oceans. The biogeochemical processes responsible for N removal, the corresponding transformation rates and overall removal efficiencies differ between lakes, however, it is unclear what the main controlling factors are. Here, we investigated the factors that moderate the rates of N removal under contrasting trophic states in two lakes located in central Switzerland. In the eutrophic Lake Baldegg and the oligotrophic Lake Sarnen, we specifically examined seasonal sediment porewater chemistry, organic matter sedimentation rates, as well as 33-year of historic water column data. We find that the eutrophic Lake Baldegg, which contributed to the removal of 20 ± 6.6 gN m−2 year−1, effectively removed two-thirds of the total areal N load. In stark contrast, the more oligotrophic Lake Sarnen contributed to 3.2 ± 4.2 gN m−2 year−1, and had removed only one-third of the areal N load. The historic dataset of the eutrophic lake revealed a close linkage between annual loads of dissolved N (DN) and removal rates (NRR = 0.63 × DN load) and a significant correlation of the concentration of bottom water nitrate and removal rates. We further show that the seasonal increase in N removal rates of the eutrophic lake correlated significantly with seasonal oxygen fluxes measured across the water–sediment interface (R2 = 0.75). We suggest that increasing oxygen enhances sediment mineralization and stimulates nitrification, indirectly enhancing denitrification activity.


Sign in / Sign up

Export Citation Format

Share Document