scholarly journals Can seasonal soil N mineralisation trends be leveraged to enhance pasture growth?

2021 ◽  
Vol 772 ◽  
pp. 145031
Author(s):  
Franco Bilotto ◽  
Matthew Tom Harrison ◽  
Massimiliano De Antoni Migliorati ◽  
Karen M. Christie ◽  
David W. Rowlings ◽  
...  
Keyword(s):  
2014 ◽  
Vol 84 ◽  
pp. 83-92 ◽  
Author(s):  
Muhammad Imtiaz Rashid ◽  
Ron G.M. de Goede ◽  
Lijbert Brussaard ◽  
Jaap Bloem ◽  
Egbert A. Lantinga

1998 ◽  
Vol 49 (3) ◽  
pp. 451 ◽  
Author(s):  
M. Wood ◽  
C. J. Pilbeam ◽  
H. C. Harris ◽  
J. Tuladhar

Productivity of 3 different 2-year crop rotations, namely continuous wheat, wheat-chickpea, and wheat-fallow, was measured over 4 consecutive seasons beginning in 1991-92 at the ICARDA station, Tel Hadya, Syria. Nitrogen (N) fertiliser (30 kg N/ha at sowing) was broadcast every other year in the continuous wheat only. 15N-labelled fertiliser was used to quantify the amount of nitrogen supplied to the crops through current and past applications of fertiliser and by N2 fixation. The remaining N in the crop was assumed to come from the soil. In any single season, wheat yields were unaffected by rotation or N level. However, 2-year biomass production was significantly greater (32%, on average) in the continuously cropped plots than in the wheat-fallow rotation. On average, <10% of the N in the wheat crop came from fertiliser in the season of application, and <1·2 kg N/ha of the residual fertiliser was recovered by a subsequent wheat crop. Chickpea fixed 16-48 kg N/ha, depending on the season, but a negative soil N budget was still likely because the amount of N removed in the grain was usually greater than the amount of atmospheric N2 fixed. Uptake of soil N was similar in the cereal phase of all 3 rotations (38 kg N/ha, on average), but over the whole rotation at least 33% more soil N was removed from continuously cropped plots than from the wheat-fallow rotation, suggesting that the latter is a more sustainable system. A laboratory study showed that although wheat and chickpea residues enhanced the gross rate of N mineralisation by c. 50%, net rates of N mineralisation were usually negative. Given the high C/N ratio of the residue, immobilisation, rather than loss processes, is the likely cause of the decline in the mineral N content of the soil. Consequently, decomposition of crop residues in the field may in the short term reduce rather than increase the availability of N for crop growth.


2005 ◽  
Vol 37 (10) ◽  
pp. 1959-1961 ◽  
Author(s):  
J.M. Xue ◽  
R. Sands ◽  
P.W. Clinton ◽  
T.W. Payn ◽  
M.F. Skinner

2015 ◽  
Vol 24 (3) ◽  
pp. 433 ◽  
Author(s):  
Jian-jian Kong ◽  
Jian Yang ◽  
Haiyan Chu ◽  
Xingjia Xiang

Both topography and wildfire can strongly affect soil nitrogen (N) availability. Although many studies have examined the individual effects of fire and topography on N, few have investigated their combined influences and relative importance. In this study, we measured soil extractable inorganic N concentrations, N mineralisation rates, and in situ soil inorganic N supply rates at 36 plots in three topographic positions (north-facing, south-facing and flat valley bottom) of burned and unburned sites in a boreal larch forest of northeastern China. Our data showed that wildfire significantly increased soil N availability, with mean soil extractable inorganic N concentrations, N mineralisation rates and N supply rates being 63, 310 and 270% higher in the burned site 1 year following fire. Additionally, soil N availability in the unburned site was significantly greater on the north-facing slope than on the south-facing slope, though this pattern was reversed at the burned site. Wildfire and topography together explained ~50% of the variance in soil N availability, with wildfire explaining three times more than topography. Our results demonstrate that wildfire and topography jointly affected spatial variations of soil N availability, and that wildfire decreased the influence of topography in the early successional stage of this boreal larch ecosystem.


2000 ◽  
Vol 80 (3) ◽  
pp. 575-582 ◽  
Author(s):  
B. J. Zebarth ◽  
R. McDougall ◽  
G. Neilsen ◽  
D. Neilsen

A 3-yr study, initiated in 1996, evaluated the availability of N from applied biosolids for dryland forage grass production under the cool, continental climatic conditions in central British Columbia. Treatments included 600 (LB), 1200 (MB) and 1800 (HB) kg total N ha−1 applied as municipal biosolids, a single application of 150 kg N ha−1 as urea in the first year of the experiment (SF), a multiple application of 150, 60 and 30 kg N ha−1 as urea in the first, second, and third years of the experiment (MF), and a control that received no biosolids or urea. All treatments were roto-tilled to 15-cm depth and seeded to a mixture of four grasses. The LB treatment was predicted to supply a similar quantity of plant-available N as the MF treatment, assuming 25, 10, and 5% of biosolids N is available in the first, second, and third year, respectively. Soil N fertility was poor as indicated by the very low forage yield and N uptake in the control, and minimal apparent net soil N mineralisation. Recovery of urea N in the crop over 3 yr averaged only 27%, likely reflecting net immobilisation in this recently broken site and accumulation of N in non-harvested portions of the crop. Cumulative recovery of N from biosolids in the harvested forage averaged only 11%. However, the fertiliser N equivalency of the biosolids N (ratio of recovery of biosolids N to urea N) was estimated at 41%, close to the predicted value of 40%. Forage yield and N uptake were similar for the LB and MF treatments, suggesting that actual biosolids N availability was similar to that predicted. Limited forage yield increase for the HB compared with the MB treatment early in the experiment, and high forage nitrate content for the HB treatment in the first year, suggest that the HB treatment initially supplied an excessive quantity of N. Both urea and biosolids applications increased cumulative uptake of other macro- and micro-nutrients, with forage Cu concentrations reaching values in the establishment year that may be of concern for some animal species. Monitoring of forage NO3 and Cu concentrations is advisable where biosolids are applied. Key words: Phleum pratense L., Dactylis glomerata, Bromus inermis, Bromus biebersteinii, soil N mineralisation, NO3 toxicity


2008 ◽  
Vol 40 (5) ◽  
pp. 1155-1166 ◽  
Author(s):  
Bernd Zeller ◽  
Juxiu Liu ◽  
Nina Buchmann ◽  
Andreas Richter

2021 ◽  
Vol 13 (10) ◽  
pp. 5649
Author(s):  
Giovani Preza-Fontes ◽  
Junming Wang ◽  
Muhammad Umar ◽  
Meilan Qi ◽  
Kamaljit Banger ◽  
...  

Freshwater nitrogen (N) pollution is a significant sustainability concern in agriculture. In the U.S. Midwest, large precipitation events during winter and spring are a major driver of N losses. Uncertainty about the fate of applied N early in the growing season can prompt farmers to make additional N applications, increasing the risk of environmental N losses. New tools are needed to provide real-time estimates of soil inorganic N status for corn (Zea mays L.) production, especially considering projected increases in precipitation and N losses due to climate change. In this study, we describe the initial stages of developing an online tool for tracking soil N, which included, (i) implementing a network of field trials to monitor changes in soil N concentration during the winter and early growing season, (ii) calibrating and validating a process-based model for soil and crop N cycling, and (iii) developing a user-friendly and publicly available online decision support tool that could potentially assist N fertilizer management. The online tool can estimate real-time soil N availability by simulating corn growth, crop N uptake, soil organic matter mineralization, and N losses from assimilated soil data (from USDA gSSURGO soil database), hourly weather data (from National Weather Service Real-Time Mesoscale Analysis), and user-entered crop management information that is readily available for farmers. The assimilated data have a resolution of 2.5 km. Given limitations in prediction accuracy, however, we acknowledge that further work is needed to improve model performance, which is also critical for enabling adoption by potential users, such as agricultural producers, fertilizer industry, and researchers. We discuss the strengths and limitations of attempting to provide rapid and cost-effective estimates of soil N availability to support in-season N management decisions, specifically related to the need for supplemental N application. If barriers to adoption are overcome to facilitate broader use by farmers, such tools could balance the need for ensuring sufficient soil N supply while decreasing the risk of N losses, and helping increase N use efficiency, reduce pollution, and increase profits.


Sign in / Sign up

Export Citation Format

Share Document