Productivity and nitrogen use of three different wheat-based rotations in North West Syria

1998 ◽  
Vol 49 (3) ◽  
pp. 451 ◽  
Author(s):  
M. Wood ◽  
C. J. Pilbeam ◽  
H. C. Harris ◽  
J. Tuladhar

Productivity of 3 different 2-year crop rotations, namely continuous wheat, wheat-chickpea, and wheat-fallow, was measured over 4 consecutive seasons beginning in 1991-92 at the ICARDA station, Tel Hadya, Syria. Nitrogen (N) fertiliser (30 kg N/ha at sowing) was broadcast every other year in the continuous wheat only. 15N-labelled fertiliser was used to quantify the amount of nitrogen supplied to the crops through current and past applications of fertiliser and by N2 fixation. The remaining N in the crop was assumed to come from the soil. In any single season, wheat yields were unaffected by rotation or N level. However, 2-year biomass production was significantly greater (32%, on average) in the continuously cropped plots than in the wheat-fallow rotation. On average, <10% of the N in the wheat crop came from fertiliser in the season of application, and <1·2 kg N/ha of the residual fertiliser was recovered by a subsequent wheat crop. Chickpea fixed 16-48 kg N/ha, depending on the season, but a negative soil N budget was still likely because the amount of N removed in the grain was usually greater than the amount of atmospheric N2 fixed. Uptake of soil N was similar in the cereal phase of all 3 rotations (38 kg N/ha, on average), but over the whole rotation at least 33% more soil N was removed from continuously cropped plots than from the wheat-fallow rotation, suggesting that the latter is a more sustainable system. A laboratory study showed that although wheat and chickpea residues enhanced the gross rate of N mineralisation by c. 50%, net rates of N mineralisation were usually negative. Given the high C/N ratio of the residue, immobilisation, rather than loss processes, is the likely cause of the decline in the mineral N content of the soil. Consequently, decomposition of crop residues in the field may in the short term reduce rather than increase the availability of N for crop growth.

1997 ◽  
Vol 48 (3) ◽  
pp. 305 ◽  
Author(s):  
I. C. R. Holford ◽  
G. J. Crocker

Six treatments were compared for their effects on wheat yields, nitrogen (N) uptake, protein content, and fertiliser N requirements in a long-term rotation study on a black earth and a red clay in northern New South Wales. Three of the treatments were lucerne, subterranean clover, and snail medic, all grown simultaneously from 1988 to 1990 and all followed by 3 years of wheat. The other 3 treatments were biennial rotations of chickpea–wheat and long-fallow–wheat as well as a continuous wheat monoculture, all lasting 6 years. With the exception of the first wheat crop, which experienced very low growing-season rainfall, lucerne was more beneficial than other legumes to following wheat crops in terms of yield, protein content, and fertiliser N requirement. Clover closely followed lucerne in the magnitude of its positive effects, whereas medic and chickpea produced much smaller effects. Because of the amount of N removed in the chickpea grain, it appeared that the small positive effects of chickpea were due to soil N sparing or rapid mineralisation from crop residues rather than any net contribution of N fixation to soil N accretion. Average yields of the 3 wheat crops following lucerne and clover were much higher than average yields 20 years previously following lucerne, even though average yields of continuously grown wheat have declined over the past 20 years. However, lucerne eliminated the need for N fertiliser for no more than 2 following wheat crops, and clover for only the first wheat crop. It appears that the longer duration of lucerne benefits reported in earlier studies was due to the higher background soil N levels as well as the lower yield potential in the earlier years. Nevertheless, lucerne lowered the fertiliser requirement of the third wheat crop by more than 50%. In contrast to lucerne, annual legumes are probably most beneficial if grown in alternate years with wheat. The large benefits of long fallowing particularly on the black earth were apparently caused by its enhancement of soil moisture and mineral N accumulation. However, these N effects were surprisingly large considering the degree of depletion of organic matter in long-fallowed soils.


1997 ◽  
Vol 48 (1) ◽  
pp. 39 ◽  
Author(s):  
E. L. Armstrong ◽  
D. P. Heenan ◽  
J. S. Pate ◽  
M. J. Unkovich

Nitrogen balances of narrow leaf lupin (Lupinus angustifolius L.), albus lupin (L. albus L.), field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), and barley (Hordeum vulgare L.) sown over a range of dates were examined in 1992 in a rotation study at Wagga Wagga, NSW. Each N budget included assessment of dependence on fixed as opposed to soil N, peak aboveground biomass N, and N removed as grain or returned as unharvested aboveground crop residues. N balances of wheat sown across the plots in 1993 were assessed similarly in terms of biomass and grain yield. Yields, N2 fixation, and crop residue N balances of the legumes were markedly influenced by sowing time, and superior performance of lupins over other species was related to higher biomass production and proportional dependence on N2 fixation, together with a poorer harvest index. Residual N balances in aboveground biomass after harvest of the 1992 crops were significantly correlated with soil mineral N at 1993 sowing and with biomass and grain N yields of the resulting wheat crop. Best mean fixation and grain N yield came from albus lupin. Wheat grain N yields following the 2 lupins were some 20% greater than after fiield pea and chickpea and 3 times greater than after barley. Net soil N balance based solely on aboveground returns of N of legumes in 1992 through to harvest of wheat in 1993 was least for narrow leaf lupin-wheat ( –20 kg N/ha), followed by albus lupin-wheat ( –44), chickpea-wheat ( –74), and field pea-wheat ( –96). Corresponding combined grain N yields (legume+wheat) from the 4 rotations were 269, 361, 178, and 229 kg N/ha, respectively. The barley-wheat rotation yielded a similarly computed soil N deficit of 67 kg/ha. Data are discussed in relation to other studies on legume-based rotations.


1994 ◽  
Vol 45 (6) ◽  
pp. 1293 ◽  
Author(s):  
PF White ◽  
NK Nersoyan ◽  
S Christiansen

There is a need to quantify the effects on soil N of introducing different legumes into the farming systems of West Asia and North Africa. This paper presents 6 years results from an on-going experiment aimed at examining the productivity of several crop/livestock farming systems in north west Syria. Changes in total soil N and organic matter when either medic pasture (3 stocking rates), vetch, lentil, fallow or watermelon were rotated yearly with wheat were examined. In addition, in the sixth year of the experiment, mineral N levels in the soil and the N content of the wheat and legumes shoots were determined in order to formulate a simple N balance for each rotation. Medic pasture and vetch rotations increased total soil N and the organic matter content of the soil. Lentil had no effect on total soil N or the organic matter content. Total soil N also remained constant in the fallow rotation, but organic matter content of the soil tended to decrease. The changes in soil properties had implications for the long term production from the different rotations, and highlighted the importance of retaining legume residues for maintaining fertility.


Soil Research ◽  
2009 ◽  
Vol 47 (2) ◽  
pp. 190 ◽  
Author(s):  
L. Rusinamhodzi ◽  
H. K. Murwira ◽  
J. Nyamangara

Carbon and nitrogen mineralisation potential of mixed cotton (Gossypium hirsutum L.) and cowpea (Vigna unguiculata (L.) Walp) crop residues produced under intercropping, as well as a reddish-brown soil classified by FAO as Ferralic Cambisol previously under intercrops, were studied over a 10-week incubation period under controlled conditions (25°C and moisture content of 70% field capacity, 125 mm) in the laboratory. Treatments consisted of cotton residues (100 : 0), cowpea residues (0 : 100), and cotton–cowpea residues (50 : 50, 70 : 30, and 30 : 70). These ratios were based on yields obtained in different cotton–cowpea intercrop treatments from a field study. Cowpea residues (0 : 100) released the highest amount of mineral N of 36.4 mg/kg soil, and cotton residues (100 : 0) least, 19.2 mg/kg soil, while the other mixtures were in between. All treatments except for cowpea residues (0 : 100) and the 30 : 70 mixture showed immobilisation of soil N during the first 2 weeks of incubation. The trend for C mineralisation was similar to that of N, and cowpea residues (0 : 100) released the highest amount, 492 mg C/kg soil, while cotton residues (100 : 0) recorded the least, 315 mg C/kg soil. The C mineralisation patterns of cowpea residues (0 : 100) and 30 : 70 treatments were exponential and were well described by the equation: where CE is exponentially mineralisable C fraction, k is the rate constant, and t is time in days. The mineralisation patterns for other treatments were sigmoidal and were well described by the equation: where CS is sigmoidally mineralisable C fraction; t 0 is time in days required for complete mineralisation of CS , while k is rate constant. The amount of N released from soil previously under cotton–cowpea intercrops and sole crops was approximately one-third of the amount released when the residues were incorporated. The highest amount of N released (12.2 mg/kg soil) was from soil previously under sole cowpea, while soil from the 1 : 1 cotton–cowpea intercrop released 9.9 mg/kg soil and soil from sole cotton released 5.9 mg/kg soil. There was no significant effect (P > 0.05) of previous crop on C mineralisation patterns of the soil. Mixtures slow down N losses and increase nutrient use efficiency of legume residues, especially in the short-term. When cotton is grown as a sole crop, starter N to offset negative effects of initial N-immobilisation at the start of season is required. A better understanding of controlling parameters of decomposition can make it possible to predict C and N mineralisation patterns in mixtures. Reduced C mineralisation in cotton–cowpea mixtures may result in more C sequestration and, hence, SOM build-up and improved sustainability in the long term in intercropping systems.


1998 ◽  
Vol 49 (3) ◽  
pp. 391 ◽  
Author(s):  
H. Marcellos ◽  
W. L. Felton ◽  
D. F. Herridge

Chickpea has potential as a rotation or break crop in the northern grains region of New South Wales and Queensland. Definition of that potential requires information on chickpea N2 fixation and on effects of chickpea on maintenance of soil N fertility and delivery of mineral N for use by a following cereal crop. Results from 6 experiments in northern NSW in which chickpea and wheat in one season were followed by wheat in subsequent seasons indicated variable N2 fixation by chickpea (mean 73 kg/ha; range 4-116 kg/ha), associated with variable Pfix (percentage of chickpea N derived from N2 fixation) (mean 57%; range 4-79%). There were no consistent differences between chickpea and wheat in effects on soil water, either pre-harvest or after the summer fallow. Chickpea ‘spared’ nitrate, relative to wheat (mean 15 kg/ha; range 1-35 kg/ha), and mineralised additional nitrate during the summer fallow (mean 18 kg/ha; range 5-40 kg/ha). Nitrate-N in the top 1·2 m of the soil profile at sowing of the following wheat crop was on average 89 kg/ha after chickpea (range 63-113 kg/ha) and 56 kg/ha after wheat (range 33-94 kg/ha). Nitrogen mineralisation rates during the summer fallow at 2 sites of 0·17 and 0· 21 kg N/ha · day (after chickpea), although greater than the rates after wheat (0· 07 and 0·12 kg N/ha · day), were not sufficient to meet the N requirements of a moderate to high yielding cereal crop. We concluded that chickpea did not fix sufficient N2 or mineralise sufficient N from residues either to maintain soil N fertility or to sustain a productive chickpea{wheat rotation without inputs of additional fertiliser N.


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


2021 ◽  
Vol 772 ◽  
pp. 145031
Author(s):  
Franco Bilotto ◽  
Matthew Tom Harrison ◽  
Massimiliano De Antoni Migliorati ◽  
Karen M. Christie ◽  
David W. Rowlings ◽  
...  
Keyword(s):  

2019 ◽  
Vol 77 (4) ◽  
pp. 931-945 ◽  
Author(s):  
Lydie Kerdraon ◽  
Marie-Hélène Balesdent ◽  
Matthieu Barret ◽  
Valérie Laval ◽  
Frédéric Suffert

1971 ◽  
Vol 51 (2) ◽  
pp. 235-241 ◽  
Author(s):  
G. S. EMMOND

Soil aggregation was lowest in a fallow-wheat rotation and increased in other fallow-grain rotations with the second, third, and fourth crops after the fallow year. The best aggregation was under continuous wheat. Rotations containing hay crops, particularly those with grass, increased soil aggregation significantly. The influence of tillage treatments on soil aggregation declined with increased depth. Various tillage treatments affected surface soil aggregation, in the following order: green manure crop plowed under > cultivated with trash cover > crop residues plowed under > cultivated with residues burned off = crop residues disced in. Fertilizer (11–48–0) applied to the wheat crop of the various tillage treatments increased soil aggregation except where the crop residues had been removed. The application of barn manure increased soil aggregation.


Sign in / Sign up

Export Citation Format

Share Document