Characteristics and removal efficiency of microplastics in sewage treatment plant of Xi'an City, northwest China

2021 ◽  
Vol 771 ◽  
pp. 145377
Author(s):  
Zeyuan Yang ◽  
Shuxing Li ◽  
Sirui Ma ◽  
Peng Liu ◽  
Dan Peng ◽  
...  
Author(s):  
Paulo Fortes Neto ◽  
Nara Lucia Perondi Fortes ◽  
Elizabeth Da Costa Neves Fernandes de Almeida Duarte ◽  
Rita Do Amaral Fragoso ◽  
Ana Catarina Marcos Henriques ◽  
...  

  The study reports the performance of a sanitary effluent treatment constituted by a septic tank, anaerobic filter and constructed wetland. The study monitored nutrient’s, carbonaceous material’s and thermotolerant coliform’s (CT) removal efficiency during 12 months. The treatment system included a septic tank, an anaerobic filter and a horizontal subsurface flow constructed wetland cultivated with Typha spp. Effluent samples were monthly collected before and after the septic tank, anaerobic filter and wetland. The removal efficiency for N-NH+4 was 37.6%, 66.3% for total P, 37% for COD, 54% for BOD and 99.4% for CT. The anaerobic filter and wetland were more efficient than the septic tank. P-total reduction was higher in the constructed wetland than in the anaerobic filter. Climatic conditions influenced the evaluated constituent’s removal being the highest values during hot months.


2019 ◽  
Vol 20 (3) ◽  
pp. 187-191
Author(s):  
Hee-Jun Kim ◽  
Kyeong-Ho Cheon ◽  
Min-Su Kim ◽  
Duck No Youn ◽  
Geon-Hui Won ◽  
...  

2012 ◽  
Vol 518-523 ◽  
pp. 406-410 ◽  
Author(s):  
Yun Hao ◽  
Xiu Guang Jiang ◽  
Qing Tian ◽  
Ai Yin Chen ◽  
Bao Ling Ma

In this study, a scientific method which can be used to improve nitrification process at low temperature in the sewage treatment plant was introduced. The activated sludge samples were taken from aeration tank of the sewage treatment plant when the outside temperature was below 0°C (water temperature below 12 °C). Five kinds of nitrobacteria strains with cold-resistance and higher activity of ammonia degradation were isolated from aeration tanks. The physiological properties showed the five strains were identified into Sphingobacteriaceae、Rhodanobacter sp.、Pseudomonas sp.、Pandoraea sp. and Perlucidibaca piscinae. All of the strains could convert ammonia-nitrogen or NO2- into NO3- in the medium at 10°C. The ammonia and nitrate removal efficiency could be reached 80.9% and 80.3% respectively. Comparing to the unvaccinated one, the removal efficiency can be increased by 50%, which proved the isolated nitrobacteria could be applied to biological nitrification process of sewage treatment at low-temperature.


2020 ◽  
Vol 5 (4) ◽  
pp. 517-524
Author(s):  
Mukesh Ruhela ◽  
Adil Ahmad Wani ◽  
Faheem Ahamad

Dal Lake is the second largest and most beautiful Lake in the state of Jammu and Kashmir and is the major centre of tourist activities. Due to the continuous increase in the population, the generation of domestic wastewater also increased. The present study was carried out to assess the efficiency of Sequential Batch Reactor (SBR) based Sewage Treatment Plant (STP) located at Brari Numbal and its discharge impact on the physicochemical properties of Dal Lake. The sample was collected from the selected sampling sites (inlet and outlet of SBR based STP, upstream, confluence zone, and downstream of Dal Lake) for five months (November 2019 to March 2020) and analysed using the standard methodologies. The plant shows maximum removal efficiency for BOD (79.85%) although the effluent BOD was found above the standard limit. The minimum removal efficiency of the plant was observed in the case of pH (3.46%). The gain in the case of DO was observed +851.55%. All the sites of Dal Lake were found polluted but the confluence zone and downstream were more polluted in comparison to the upstream due to the discharge of STP outlet into Dal Lake with higher BOD and COD (21.39% increase in BOD, 43.29% increase in COD; 80.10% increase in iron, 65.61% increase in ammonical nitrogen, and 101% increase in phosphate concentration). Besides this, discharge of the huge quantity of untreated wastewater from the city into the lake is also responsible for the degraded water quality of Dal Lake. It can be concluded that efficiency of the plant was in moderate condition and it needs further modifications. This is the first study showing the impact of SBR-STP effluent on Dal Lake.


2009 ◽  
Vol 59 (2) ◽  
pp. 295-301 ◽  
Author(s):  
T. Taniguchi ◽  
K. Nakano ◽  
N. Chiba ◽  
M. Nomura ◽  
O. Nishimura

Mesocosm-scale vertical subsurface flow constructed wetlands (SSF, 0.5 m length, 0.3 m width) with different reed-bed thickness, including standard SSF (SD, 0.6 m deep), shallow SSF (S, 0.3 m deep) and extremely shallow SSF (ES, 0.075 m deep) were set up at sewage treatment plant and their nutrient removal efficiencies from the sewage plant effluent were compared under three hydraulic loading rate (HLR) conditions of 0.15, 0.45 and 0.75 m3 m−2 d−1. A very interesting characteristics was found for the extremely shallow SSF, in which a high nitrogen removal efficiency was obtained despite the effective hydraulic retention time was only 1/8 times as long as the standard SSF. The results of kinetic analysis confirmed that the high volumetric nitrogen removal efficiency observed in the extremely shallow SSF did not depend on high response against the water temperature but on much higher basic nitrogen removal activity compared with other SSF. The phosphorus removal depending on the adsorption to sand in the reed-bed filter was, however, the lowest in the extremely shallow SSF although the volumetric removal efficiency was much higher compared with other SSF. Results of morphological analysis of rhizosphere collected from respective reed-bed suggested that the extremely shallow SSF lead to a very high-density rhizosphere, resulting in a high basic nitrogen removal activity and volumetric phosphorus removal efficiency.


2014 ◽  
Vol 641-642 ◽  
pp. 384-389
Author(s):  
Rui Wu ◽  
Li Gang Xu ◽  
Dan Chen

As a cost-effective technology, using biological treatment technology to treat tail water has been gradually promoted in and abroad. Biological treatment technology uses the organic combination of water ecosystem to remove the organic pollutants and pollutants such as N and P which cause water eutrophication. This paper takes Jiangyin City Xinqiao Town Sewage Treatment Plant as example to construct bio-ecological combined constructed wetlands system near natural river course to treat tail water from sewage treatment plant and investigates the removal efficiency of combination process for COD, ammonia, TN and TP in tail water. The research indicates that bio-ecological combined constructed wetlands system has good removal efficiency for pollutants in tail water. And the average removal rate of COD, ammonia, TN and TP are 29%, 31%, 18%, and 8%; the average effluent concentration of them are 35.54mg/L, 0.97mg/L, 10.77 mg/L, and 0.11 mg/L. The result exactly matches the first grade A standard of Urban Sewage Treatment Plant Pollutant Discharge Standard (GB18918-2002). It has great potential for tail water treatment and is suitable for rural regions. The research result provides both the data and theoretical basis for improvement of biological treatment technology of tail water from sewage treatment plant, and also provides direct theoretical basis and practical experience for promotion and research of wetlands ecosystem.


2018 ◽  
Vol 69 (5) ◽  
pp. 833 ◽  
Author(s):  
Siyuan Song ◽  
Benfa Liu ◽  
Wenjuan Zhang ◽  
Penghe Wang ◽  
Yajun Qiao ◽  
...  

Water quality standards pertaining to effluent from sewage treatment plants (STPs) in China have become more stringent, requiring upgrading of STPs and entailing huge capital expenditure. Wetland treatment systems (WTSs) are a low-cost and highly efficient approach for deep purification of tailwater from STPs. The Hongze WTS (HZ-WTS), a large-scale surface-flow constructed wetland, with a total area of 55.58ha and a treatment capacity of 4×104m3day–1, was built for the disposal of tailwater from STPs. The aim of the present study was to evaluate the performance of HZ-WTP with regard to seasonal variations and to compare treatment costs with those of other STPs. The performance of the HZ-WTS was evaluated in 2013 using online monitoring. HZ-WTS exhibited significant removal efficiency of ammonia nitrogen (NH4+-N), chemical oxygen demand and total phosphorus (mean±s.d., percentage removal efficiency 56.33±70.44, 55.64±18.58 and 88.44±22.71% respectively), whereas there was significant seasonal variation in the efficiency of NH4+-N removal. In addition, the average treatment cost was ¥0.17m–3, significantly lower than the corresponding value for other STPs. Therefore, WTSs are recommended for use with STPs in order to improve waste water quality in a cost-effective manner.


2005 ◽  
Vol 52 (8) ◽  
pp. 29-35 ◽  
Author(s):  
M. Carballa ◽  
F. Omil ◽  
J.M. Lema ◽  
M. Llompart ◽  
C. García ◽  
...  

Thirteen pharmaceutical and cosmetic compounds have been surveyed along the different units of a municipal sewage treatment plant (STP) to study their fate across each step and the overall removal efficiency. The STP studied corresponds to a population of approximately 100,000 inhabitants located in Galicia (northwest Spain), including three main sections: pre-treatment (coarse and fine screening, grit and fat removal); primary treatment (sedimentation tanks); and secondary treatment (conventional activated sludge). Among all the substances considered (galaxolide, tonalide, carbamazepine, diazepam, diclofenac, ibuprofen, naproxen, estrone, estradiol, ethinylestradiol, roxitromycin, sulfamethoxazole and iopromide), only significant concentrations were found for two musks (galaxolide and tonalide), two antiphlogistics (ibuprofen and naproxen), two natural estrogens (estrone, estradiol), one antibiotic (sulfamethoxazole) and the X-ray contrast media (iopromide), being the other compounds below the quantification level. In the primary treatment, only the fragrances were partly removed, with efficiencies of 20–50% for galaxolide and tonalide. However, the aerobic treatment caused an important reduction in all compounds detected, between 35 and 75%, with the exception of iopromide. The overall removal efficiency of the STP ranged between 70 and 90% for the fragrances, 45 and 70% for the acidic compounds, around 67% for estradiol and 57% for the antibiotic sulfamethoxazole.


2018 ◽  
Vol 27 (1) ◽  
pp. 39-45
Author(s):  
Young-Ik Choi ◽  
Dae-Yeol Shin ◽  
Seung-Chul Lee ◽  
Jin-Hee Jung ◽  
Young-Nae Yoon

Sign in / Sign up

Export Citation Format

Share Document