Carbonate assisted lipid extraction and biodiesel production from wet microalgal biomass and recycling waste carbonate for CO2 supply in microalgae cultivation

2021 ◽  
Vol 779 ◽  
pp. 146445
Author(s):  
Ruolan Zhang ◽  
Jinghan Wang ◽  
Xiaoqian Zhai ◽  
Jian Che ◽  
Zhilong Xiu ◽  
...  
2014 ◽  
Vol 28 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Agata Piasecka ◽  
Izabela Krzemińska ◽  
Jerzy Tys

Abstract The prospect of depletion of natural energy resources on the Earth forces researchers to seek and explore new and alternative energy sources. Biomass is a composite resource that can be used in many ways leading to diversity of products. Therefore, microalgal biomass offers great potential. The main aim of this study is to find the best physical method of microalgal biomass pretreatment that guarantees efficient lipid extraction. These studies identifies biochemical composition of microalgal biomass as source for biodisel production. The influence of drying at different temperatures and lyophilization was investigated. In addition, wet and untreated biomass was examined. Cell disruption (sonication and microwave) techniques were used to improve lipid extraction from wet biomass. Additionally, two different extraction methods were carried out to select the best method of crude oil extraction. The results of this study show that wet biomass after sonication is the most suitable for extraction. The fatty acid composition of microalgal biomass includes linoleic acid (C18:2), palmitic acid (C16:0), oleic acid (C18:1), linolenic acid (C18:3), and stearic acid (C18:0), which play a key role in biodiesel production.


e-xacta ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 11
Author(s):  
Najla Postaue ◽  
Leila Cristina Moraes ◽  
Rosa Maria Farias Asmus

A biomassa de microalgas tem apresentado potencial para produção de biodiesel, contudo a viabilidade do cultivo de microalgas depende de fonte de nutrientes de baixo custo. O presente estudo objetivou utilizar o chorume como fonte de nutrientes para microalgas. Os experimentos foram conduzidos visando avaliar a obtenção da biomassa microalgal, conversão de lipídios e rendimento em ésteres metílicos de ácidos graxos, para os meios de cultivos utilizando 5%, 12% e 20% de chorume, com concentrações de 0,02, 0,05 e 0,08 g N. L-1 e para meio de controle contendo 1% de, Nitrogênio (N), Fósforo (P) e Potássio (K), na concentração de 20 g L-1, 5 g L-1 e 20 g L-1, respectivamente. A microalga utilizada neste trabalho foi a de classe Chlorophyceae e família Coccomyxaceae. Os resultados demonstraram que o meio com concentração de 12% de chorume obteve melhores resultados, possibilitando alcançar 1,19 g de biomassa, conversão de 108,15 mg g-1 de lipídios e conteúdo de ésteres de 410,77mg g-1, a microalga utilizada apresentou ainda predominância dos ácidos graxos palmítico e oleico, apresentando baixa quantidade de ácidos graxos saturados o que pode fornecer ao combustível, resistência ao frio. E tais aspectos demonstraram que o chorume pode ser uma fonte promissora de nutrientes para o cultivo das microalgas estudadas. AbstractMicroalgae biomass has presented potential for biodiesel production, however the viability of microalgae cultivation depends on low cost nutrient source. The present study aimed to use leachate as a source of nutrients for microalgae. The experiments were conducted to evaluate the microalgal biomass, lipid conversion and yield in fatty acid methyl esters, for the culture media using 5%, 12% and 20% leachate, with concentrations of 0.02, 0.05 and 0.08 g N. L-1 and for control medium containing 1% Nitrogen (N), Phosphorus (P) and Potassium (K), at a concentration of 20 g L-1, 5 g L-1 and 20 g L-1, respectively. The microalgae used in this work was Chlorophyceae class and Coccomyxaceae family. The results showed that the medium with a concentration of 12% of leachate obtained better results, allowing to reach 1.19 g of biomass, conversion of 108.15 mg g-1 of lipids and esters content of 410,77 mg g-1. The microalgae used also presented predominance of palmitic and oleic fatty acids, presenting low amount of saturated fatty acids which can provide the fuel with cold resistance. And these aspects demonstrated that the leachate can be a promising source of nutrients for the cultivation of the studied microalgae.


2021 ◽  
Vol 13 (12) ◽  
pp. 6606
Author(s):  
Laura Vélez-Landa ◽  
Héctor Ricardo Hernández-De León ◽  
Yolanda Del Carmen Pérez-Luna ◽  
Sabino Velázquez-Trujillo ◽  
Joel Moreira-Acosta ◽  
...  

Microalgal biomass has the capacity to accumulate relatively large quantities of triacylglycerides (TAG) for the conversion of methyl esters of fatty acids (FAME) which has made microalgae a desirable alternative for the production of biofuels. In the present work Verrucodesmus verrucosus was evaluated under autotrophic growth conditions as a suitable source of oil for biodiesel production. For this purpose BG11 media were evaluated in three different light:dark photoperiods (L:D; 16:08; 12:12; 24:0) and light intensities (1000, 2000 and 3000 Lux) in a photobioreactor with a capacity of three liters; the evaluation of the microalgal biomass was carried out through the cell count with the use of the Neubauer chamber followed by the evaluation of the kinetic growth parameters. So, the lipid accumulation was determined through the lipid extraction with a Soxhlet system. Finally, the fatty acid profile of the total pooled lipids was determined using gas chromatography-mass spectroscopy (GC-MS). The results demonstrate that the best conditions are a photoperiod of 12 light hours and 12 dark hours with BG11 medium in a 3 L tubular photobioreactor with 0.3% CO2, 25 °C and 2000 Lux, allowing a lipid accumulation of 50.42%. Palmitic acid is identified as the most abundant fatty acid at 44.90%.


2015 ◽  
Author(s):  
◽  
Abhishek Guldhe

Main focus of this study is to investigate the enzymatic-conversion of microalgal lipids to biodiesel. However, preceding steps before conversion such as drying of microalgal biomass and extraction of lipids were also studied. Downstream processing of microalgae has several challenges and there is very little literature available in this area. S. obliquus was grown in the pilot scale open pond cultivation system for biomass production. Different techniques were studied for biomass drying and extraction of lipids from harvested microalgal biomass. Effect of these drying and extraction techniques on lipid yield and quality was assessed. Energy consumption and economic evaluation was also studied. Enzymatic conversion of microalgal lipids by extracellular and whole cell lipase application was investigated. For both applications, free and immobilized lipases from different sources were screened and selected based on biodiesel conversion. Process parameters were optimized using chosen extracellular and whole cell lipases; also step-wise methanol addition was studied to improve the biodiesel conversion. Immobilized lipase was studied for its reuse. Final biodiesel was characterized for its fuel properties and compared with the specifications given by international standards. Enzymatic conversion of microalgal lipids was compared with the conventional homogeneous acid-catalyzed conversion. Enzymatic conversion and chemical conversion were techno-economically investigated based on process cost, energy consumption and processing steps. Freeze drying was the most efficient technique, however at large scale economical sun drying could also be selected as possible drying step. Microwave assisted lipid extraction performed better compared to sonication technique. Immobilized P. fluorescens lipase in extracellular application and A. niger lipase in whole cell application showed superior biodiesel conversion. The extracellular immobilized P. fluorescens lipase showed better biodiesel conversion and yields than the immobilized A. niger whole cell lipase. Both the enzyme catalysts showed lower biodiesel conversion compared to conventional chemical catalyst and higher processing cost. However, techno-economic analysis showed that, the reuse potential of immobilized lipases can significantly improve the economics. Fewer purification steps, less wastewater generation and minimal energy input are the benefits of enzymatic route of biodiesel conversion. Microalgae as a feedstock and lipase as a catalyst for conversion makes overall biodiesel production process environmentally-friendly. Data from this study has academic as well as industrial significance. Conclusions from this study form the basis for greener and sustainable scaling-up of microalgal biodiesel production process.


2013 ◽  
Vol 133 ◽  
pp. 378-388 ◽  
Author(s):  
Sergio D. Ríos ◽  
Joandiet Castañeda ◽  
Carles Torras ◽  
Xavier Farriol ◽  
Joan Salvadó

2020 ◽  
Vol 18 (1) ◽  
pp. 874-881
Author(s):  
Laras Prasakti ◽  
Sangga Hadi Pratama ◽  
Ardian Fauzi ◽  
Yano Surya Pradana ◽  
Arief Budiman ◽  
...  

AbstractAs fossil fuels were depleting at an alarming rate, the development of renewable energy has become necessary. One of the promising renewable energy to be used is biodiesel. The interest in using third-generation feedstock, which is microalgae, is rapidly growing. The use of third-generation biodiesel feedstock will be more beneficial as it does not compete with food crop use and land utilization. The advantageous characteristic which sets microalgae apart from other biomass sources is that microalgae have high biomass yield. Conventionally, microalgae biodiesel is produced by lipid extraction followed by transesterification. In this study, combination process between hydrothermal liquefaction (HTL) and esterification is explored. The HTL process is one of the biomass thermochemical conversion methods to produce liquid fuel. In this study, the HTL process will be coupled with esterification, which takes fatty acid from HTL as raw material for producing biodiesel. Both the processes will be studied by simulating with Aspen Plus and thermodynamic analysis in terms of energy and exergy. Based on the simulation process, it was reported that both processes demand similar energy consumption. However, exergy analysis shows that total exergy loss of conventional exergy loss is greater than the HTL-esterification process.


2021 ◽  
pp. 100696
Author(s):  
Prakash Bhuyar ◽  
Sathyavathi Sundararaju ◽  
Mohd Hasbi Ab. Rahim ◽  
Gaanty Pragas Maniam ◽  
Natanamurugaraj Govindan

Sign in / Sign up

Export Citation Format

Share Document