scholarly journals Monitoring of Human Enteric Virus and Coliphages Throughout Water Reuse System of Wastewater Treatment Plants to Irrigation Endpoint of Leafy Greens

Author(s):  
Pilar Truchado ◽  
Alberto Garre ◽  
Maria I. Gil ◽  
Pedro J. Simón-Andreu ◽  
Gloria Sánchez ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cui Wang ◽  
Zhouhua Guo ◽  
Qingsheng Li ◽  
Jing Fang

AbstractIn order to protect the offshore environment and strengthen the comprehensive rectification of sewage outfalls, an evaluation method of regional sewage outfalls by combining the marine numerical simulation and comprehensive evaluation technology was constructed, considering the marine environmental capacity and the ecological impact of sewage discharge from outfalls on the marine eco-environment sensitive areas. Then the layout rationality of each outfall was evaluated and the discharge scale was optimized with a case study of existing sewage outfalls in Xiamen. The results show that, the comprehensive evaluation score of Yundang outfall was 3 points in 2025, evaluated as the outfall with irrational layout. In 2035, the comprehensive evaluation scores of Fenglin and Dalipu outfalls were 3 and 2 points respectively, evaluated as the outfall with irrational discharge scale. It is suggested to control the scale of expansion or increase the reclaimed water reuse rate in Jimei and Gaoqi Wastewater Treatment Plants. This method has enriched the evaluation system for layout optimization of sewage outfalls, providing scientific supports for comprehensive improvement of sewage outfalls and marine environmental management.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2764
Author(s):  
Argyro Plevri ◽  
Klio Monokrousou ◽  
Christos Makropoulos ◽  
Christos Lioumis ◽  
Nikolaos Tazes ◽  
...  

Water reuse and recycling is gaining momentum as a way to improve the circularity of cities, while recognizing the central role of water within a circular economy (CE) context. However, such interventions often depend on the location of wastewater treatment plants and the treatment technologies installed in their premises, while relying on an expensive piped network to ensure that treated wastewater gets transported from the treatment plant to the point of demand. Thus, the penetration level of treated wastewater as a source of non-potable supply in dense urban environments is limited. This paper focuses on the demonstration of a sewer mining (SM) unit as a source of treated wastewater, as part of a larger and more holistic configuration that examines all three ‘streams’ associated with water in CE: water, energy and materials. The application area is the Athens Plant Nursery, in the (water stressed) city of Athens, Greece. SM technology is in fact a mobile wastewater treatment unit in containers able to extract wastewater from local sewers, treat it directly and reuse at the point of demand even in urban environments with limited space. The unit consists of a membrane bioreactor unit (MBR) and a UV disinfection unit and produces high quality reclaimed water for irrigation and also for aquifer recharge during the winter. Furthermore, a short overview of the integrated nutrient and energy recovery subsystem is presented in order to conceptualise the holistic approach and circularity of the whole configuration. The SM technology demonstrates flexibility, scalability and replicability, which are important characteristics for innovation uptake within the emerging CE context and market.


2013 ◽  
Vol 68 (3) ◽  
pp. 575-583 ◽  
Author(s):  
R. Mosteo ◽  
M. P. Ormad ◽  
P. Goñi ◽  
J. Rodríguez-Chueca ◽  
A. García ◽  
...  

The aim of this research work is to identify the presence of pathogens, bacteria and protozoa, in different treated urban wastewaters and to relate biological pollution with the processes used in wastewater treatment plants. A study of the possibilities for water reuse is carried out taking into account bacterial and parasite composition. The analysed bacteria and protozoa are: Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium perfringens (spore), Salmonella spp., Legionella spp., helminths eggs, Giardia, Cryptosporidium spp. and free-living amoebae (FLA). The selected municipal wastewater treatment plants (MWTPs) are located in Navarra (Spain) and the main difference between them is the use of natural lagoons as tertiary treatment in some plants. The results concerning bacteriological identification showed contamination of mainly faecal origin, and the use of natural lagoons as tertiary treatment in some MWTPs produced an important disinfection effect. Moreover, pathogen parasites such as Giardia and Cryptosporidium were not detected in the samples studied although FLA were identified in all cases.


RSC Advances ◽  
2016 ◽  
Vol 6 (93) ◽  
pp. 90631-90645 ◽  
Author(s):  
Márcia M. F. F. Salim ◽  
Aline Novack ◽  
Petrick A. Soares ◽  
Ângela Medeiros ◽  
Miguel A. Granato ◽  
...  

A photochemical UVC/H2O2 oxidation system was applied for the decolourisation of two real textile wastewaters collected after biological oxidation from two different textile wastewater treatment plants.


2015 ◽  
Vol 5 (3) ◽  
pp. 407-418 ◽  
Author(s):  
Rong Chen ◽  
Xiaochang Wang ◽  
Yanzheng Liu

A water reuse system was formulated for the Xi'an International Metropolitan Urban Planning Project, with the aim of mitigating water stress in the central city of Xi'an, China in 2020. The main reuse purposes of the reclaimed water were agriculture, industry, municipal, ecological, and indoor uses. A wastewater reuse potential capacity of 427.2 × 106 m3/yr was deduced by analyzing the water demand for the different reuse purposes. This reuse capacity makes significant contribution to increasing the total urban water supply capacity and mitigating the water shortage problems imposed by the process of urbanization. A supply scheme for the reclaimed water was configured, which comprised the reclaimed water sources, water supply service areas, and the main reuse purposes. As a result, a wastewater treatment plants (WWTPs)-centered reclaimed water supply system was formed, and the main reuse purposes of the 15 WWTPs and their service districts were defined. Through an economic analysis, the feasibility and benefits of the water reuse system were ascertained. Overall, this study provided the theoretical basis and implementation strategies for a system configuration of water reuse in Xi'an City and also contributed to solving the water-deficiency problems associated with the rapidly developing urban areas in China.


2017 ◽  
Vol 15 (4) ◽  
pp. 626-637 ◽  
Author(s):  
R. Irwin ◽  
A. Surapaneni ◽  
D. Smith ◽  
J. Schmidt ◽  
H. Rigby ◽  
...  

At South East Water wastewater treatment plants (WwTPs) in Victoria, Australia, biosolids are stockpiled for three years in compliance with the State guidelines to achieve the highest pathogen reduction grade (T1), suitable for unrestricted use in agriculture and landscaping. However, extended stockpiling is costly, may increase odour nuisance and greenhouse gas emissions, and reduces the fertiliser value of the biosolids. A verification programme of sampling and analysis for enteric pathogens was conducted at two WwTPs where sludge is treated by aerobic and anaerobic digestion, air drying (in drying pans or solar drying sheds) and stockpiling, to enumerate and, if present, monitor the decay of a range of enteric pathogens and parasites. The sludge treatment processes at both WwTPs achieved T1 grade biosolids with respect to prescribed pathogenic bacterial numbers (<1 Salmonella spp. 50 g−1 dry solids (DS) and <100 Escherichia coli g−1 DS) and >3 log10 enteric virus reduction after a storage period of one year. No Ascaris eggs were detected in the influent to the WwTPs, confirming previous studies that the presence of helminth infections in Victoria is extremely low and that Ascaris is not applicable as a control criterion for the microbiological quality of biosolids in the region.


Sign in / Sign up

Export Citation Format

Share Document