scholarly journals The pharmacological stimulation of Nurr1 improves cognitive functions via enhancement of adult hippocampal neurogenesis

2016 ◽  
Vol 17 (3) ◽  
pp. 534-543 ◽  
Author(s):  
Jin-il Kim ◽  
Seong Gak Jeon ◽  
Kyoung Ah Kim ◽  
Yong Jun Kim ◽  
Eun Ji Song ◽  
...  
2019 ◽  
Vol 21 (1) ◽  
pp. 4 ◽  
Author(s):  
Haena Moon ◽  
Seong Gak Jeon ◽  
Jin-il Kim ◽  
Hyeon soo Kim ◽  
Sangho Lee ◽  
...  

Nuclear receptor related-1 (Nurr1) protein performs a crucial role in hippocampal neural stem cell (hNSC) development as well as cognitive functions. We previously demonstrated that the pharmacological stimulation of Nurr1 by amodiaquine (AQ) promotes spatial memory by enhancing adult hippocampal neurogenesis. However, the role of Nurr1 in the cell cycle regulation of the adult hippocampus has not been investigated. This study aimed to examine changes in the cell cycle-related molecules involved in adult hippocampal neurogenesis induced by Nurr1 pharmacological stimulation. Fluorescence-activated cell sorting (FACS) analysis showed that AQ improved the progression of cell cycle from G0/G1 to S phase in a dose-dependent manner, and MEK1 or PI3K inhibitors attenuated this progression. In addition, AQ treatment increased the expression of cell proliferation markers MCM5 and PCNA, and transcription factor E2F1. Furthermore, pharmacological stimulation of Nurr1 by AQ increased the expression levels of positive cell cycle regulators such as cyclin A and cyclin-dependent kinases (CDK) 2. In contrast, levels of CDK inhibitors p27KIP1 and p57KIP2 were reduced upon treatment with AQ. Similar to the in vitro results, RT-qPCR analysis of AQ-administered mice brains revealed an increase in the levels of markers of cell cycle progression, PCNA, MCM5, and Cdc25a. Finally, AQ administration resulted in decreased p27KIP1 and increased CDK2 levels in the dentate gyrus of the mouse hippocampus, as quantified immunohistochemically. Our results demonstrate that the pharmacological stimulation of Nurr1 in adult hNSCs by AQ promotes the cell cycle by modulating cell cycle-related molecules.


Author(s):  
Yacong He ◽  
Shuang Chen ◽  
Bun Tsoi ◽  
Shuhua Qi ◽  
Bing Gu ◽  
...  

Alpinia oxyphylla Miq. (AOM) is a medicinal herb for improving cognitive functions in traditional Chinese medicine for poststroke treatment, but its efficacies and underlying mechanisms remain unknown. In the present study, we tested the hypothesis that AOM could induce adult hippocampal neurogenesis and improve poststroke cognitive impairment via inducing brain-derived neurotrophic factor (BDNF) signaling pathway. In order to test the hypothesis, we performed both in vivo rat experiments using transient middle cerebral artery occlusion (MCAO) model and in vitro neural stem cell (NSC) experiments using oxygen–glucose deprivation plus reoxygenation. First, AOM treatment significantly up-regulated the expression of BDNF, tropomycin receptor kinase B (TrkB), and phosphorylated AKT (p-AKT) in the hippocampus, enhanced adult hippocampal neurogenesis, and improved the spatial learning/memory and cognitive functions in the post-MCAO ischemic rats in vivo. Next, in vitro studies confirmed p-coumaric acid (P-CA) to be the most effective compound identified from AOM extract with the properties of activating BDNF/TrkB/AKT signaling pathway and promoting NSC proliferation. Cotreatment of BDNF/TrkB-specific inhibitor ANA12 abolished the effects of P-CA on inducing BDNF/TrkB/AKT activation and the NSC proliferation. Finally, animal experiments showed that P-CA treatment enhanced the neuronal proliferation and differentiation in the hippocampus, improved spatial learning and memory functions, and reduced anxiety in the transient MCAO ischemic rats. In conclusion, P-CA is a representative compound from AOM for its bioactivities of activating BDNF/TrkB/AKT signaling pathway, promoting hippocampal neurogenesis, improving cognitive functions, and reducing anxiety in post–ischemic stroke rats.


Gerontology ◽  
2018 ◽  
Vol 64 (6) ◽  
pp. 562-575 ◽  
Author(s):  
Sung Min Nam ◽  
Hongik Hwang ◽  
Misun Seo ◽  
Byung-Joon Chang ◽  
Hyeon-Joong Kim ◽  
...  

Background: Ginseng has been used to improve brain function and increase longevity. However, little is known about the ingredients of ginseng and molecular mechanisms of its anti-brain aging effects. Gintonin is a novel exogenous ginseng-derived lysophosphatidic acid (LPA) receptor ligand; LPA and LPA1 receptors are involved in adult hippocampal neurogenesis. D-galactose (D-gal) is used to induce brain ­aging in animal models because long-term treatment with D-gal facilitates hippocampal aging in experimental adult animals by decreasing hippocampal neurogenesis and inducing learning and memory dysfunction. Objective: To investigate the protective effects of gintonin on D-gal-induced hippocampal senescence, impairment of long-term potentiation (LTP), and memory dysfunction. Methods: Brain hippocampal aging was induced by D-gal administration (150 mg/kg/day, s.c.; 10 weeks). From the 7th week, gintonin (50 or 100 mg/kg/day, per os) was co-administered with D-gal for 4 weeks. We performed histological analyses, LTP measurements, and object location test. Results:  Co-administration of gintonin ameliorated D-gal-induced reductions in hippocampal Ki67-immunoreactive proliferating cells, doublecortin-immunoreactive neuroblasts, 5-bromo-2’-deoxyuridine-incorporating NeuN-immunoreactive mature neurons, and LPA1 receptor expression. Co-administration of gintonin in D-gal-treated mice increased the expression of phosphorylated cyclic adenosine monophosphate response element binding protein in the hippocampal dentate gyrus. In addition, co-administration of gintonin in D-gal-treated mice enhanced LTP and restored the cognitive functions compared with those in mice treated with D-gal only. Conclusion: These results show that gintonin administration restores D-gal-induced memory deficits by enhancing hippocampal LPA1 receptor expression, LTP, and neurogenesis. Finally, the present study shows that gintonin exerts anti-brain aging effects that are responsible for alleviating brain aging-related dysfunction.


Science ◽  
2018 ◽  
Vol 361 (6406) ◽  
pp. eaan8821 ◽  
Author(s):  
Se Hoon Choi ◽  
Enjana Bylykbashi ◽  
Zena K. Chatila ◽  
Star W. Lee ◽  
Benjamin Pulli ◽  
...  

Adult hippocampal neurogenesis (AHN) is impaired before the onset of Alzheimer’s disease (AD) pathology. We found that exercise provided cognitive benefit to 5×FAD mice, a mouse model of AD, by inducing AHN and elevating levels of brain-derived neurotrophic factor (BDNF). Neither stimulation of AHN alone, nor exercise, in the absence of increased AHN, ameliorated cognition. We successfully mimicked the beneficial effects of exercise on AD mice by genetically and pharmacologically inducing AHN in combination with elevating BDNF levels. Suppressing AHN later led to worsened cognitive performance and loss of preexisting dentate neurons. Thus, pharmacological mimetics of exercise, enhancing AHN and elevating BDNF levels, may improve cognition in AD. Furthermore, applied at early stages of AD, these mimetics may protect against subsequent neuronal cell death.


SLEEP ◽  
2020 ◽  
Author(s):  
Andrey Kostin ◽  
Md Aftab Alam ◽  
Dennis McGinty ◽  
Md Noor Alam

Abstract In the mammalian brain, adult neurogenesis has been extensively studied in the hippocampal sub-granular zone and the sub-ventricular zone of the anterolateral ventricles. However, growing evidence suggests that new cells are not only “born” constitutively in the adult hypothalamus, but many of these cells also differentiate into neurons and glia and serve specific functions. The preoptic-hypothalamic area plays a central role in the regulation of many critical functions, including sleep–wakefulness and circadian rhythms. While a role for adult hippocampal neurogenesis in regulating hippocampus-dependent functions, including cognition, has been extensively studied, adult hypothalamic neurogenic process and its contributions to various hypothalamic functions, including sleep–wake regulation are just beginning to unravel. This review is aimed at providing the current understanding of the hypothalamic adult neurogenic processes and the extent to which it affects hypothalamic functions, including sleep–wake regulation. We propose that hypothalamic neurogenic processes are vital for maintaining the proper functioning of the hypothalamic sleep–wake and circadian systems in the face of regulatory challenges. Sleep–wake disturbance is a frequent and challenging problem of aging and age-related neurodegenerative diseases. Aging is also associated with a decline in the neurogenic process. We discuss a hypothesis that a decrease in the hypothalamic neurogenic process underlies the aging of its sleep–wake and circadian systems and associated sleep–wake disturbance. We further discuss whether neuro-regenerative approaches, including pharmacological and non-pharmacological stimulation of endogenous neural stem and progenitor cells in hypothalamic neurogenic niches, can be used for mitigating sleep–wake and other hypothalamic dysfunctions in aging.


1997 ◽  
Vol 77 (01) ◽  
pp. 137-142 ◽  
Author(s):  
Kiyoshi Tachikawa ◽  
Keiji Hasurni ◽  
Akira Endo

SummaryPlasminogen binds to endothelial and blood cells as well as to fibrin, where the zymogen is efficiently activated and protected from inhibition by α2-antiplasmin. In the present study we have found that complestatin, a peptide-like metabolite of a streptomyces, enhances binding of plasminogen to cells and fibrin. Complestatin, at concentrations ranging from 1 to 5 μM, doubled 125I-plasminogen binding to U937 cells both in the absence and presence of lipoprotein(a), a putative physiological competitor of plasminogen. The binding of 125I-plasminogen in the presence of complestatin was abolished by e-aminocaproic acid, suggesting that the lysine binding site(s) of the plasminogen molecule are involved in the binding. Equilibrium binding analyses indicated that complestatin increased the maximum binding of 125I-plasminogen to U937 cells without affecting the binding affinity. Complestatin was also effective in increasing 125I-plasminogen binding to fibrin, causing 2-fold elevation of the binding at ~1 μM. Along with the potentiation of plasminogen binding, complestatin enhanced plasmin formation, and thereby increased fibrinolysis. These results would provide a biochemical basis for a pharmacological stimulation of endogenous fibrinolysis through a promotion of plasminogen binding to cells and fibrin.


Sign in / Sign up

Export Citation Format

Share Document